
Two methods for finding cellular automata that perform simple computations
M. Bustamante, C. Guerra, J. Veerman*

Pontificia Universidad Católica del Perú

Abstract
We have used two different methods to find cellular automata (CA) that 
perform some simple computations: by specifically constructing them to do 
a certain task and by doing searches in CA rule space. For the first case 
(specific construction), we start by building a CA that computes some 
arithmetic or logic function in a serial way, that is, a particle first moves to 
read one of the inputs and then applies it to the other one. Even though the 
rule we find ends up with a lot of states, depending on the type of operation 
we want it to perform, and it is not simple anymore, we find some types of 
behavior that are then used to construct CA rules that perform the same 
tasks but in a parallel way, therefore requiring a fewer number of states and 
steps. The results obtained in the first method are then used as restrictions 
or assumptions for the second method (searches in a rule space) in order 
to narrow down the rule space to perform a more directed search. We show 
some results for arithmetic functions, bitwise logic operations and other 
simple computations. 

Specific construction
The initial condition is encoded in the format Input1-Particle-Input2, where 
both pieces of input (written in unary) are static while the particle(s) is 
moving around performing the computation. Specific construction is a step-
by-step process where new states (or colors) are added as needed, the 
final goal being to halt after the calculation is complete. However, careful 
attention must be paid in order to avoid colors from intervening in tasks 
they were not designed to take part in. 

In general, there are two approaches to performing a calculation. In serial 
constructions, a single particle carries out different tasks while changing its 
state. This makes the process slow, but easier to understand and program. 
In parallel constructions, the computation is carried out by more than one 
particle simultaneosuly, making the process faster, but harder to visualize 
and therefore to program. A comparison between these two approaches is 
shown in Figure 1.

Searches in CA rule space
The difficulty of performing searches in CA rule space is its rapid growth with the 
number of states. Based on what we have learned from doing specific 
constructions, some constraints and filters can be applied in order to reduce the 
search space. From the parallel constructs, a maximum number of steps can be 
taken into account if what we expect to find are time-efficient rules. An estimate of 
the number of colors needed to perform a certain computation can also be inferred 
from them. Finally, some basic interactions between particles which were 
observed in the specific constructions can be assumed to hold for the rules that we 
look for, therefore narrowing down the search by several orders of magnitude. 
Some examples of rules found for subtraction are shown in Figure 5.

Further work
Work is currently being done on designing algorithms to search in very large CA 
rule spaces by different methods.

A different line of research is the study of substitution systems that perform simple 
computations, with some results already found. Figure 6 shows some examples of 
sets of transformation rules that perform simple computations with two kind of 
sequential substitution systems (SSS): rulewise SSS (RW3S, changes the rule 
until a rule applies) and substringwise SSS (SW3S, changes the substring until a 
rule applies). These rules were found by perfroming exhaustive searches in small 
sets of all possible string transformation rules. 

1 1 1 m1 1 1 1
1 1 1 m1 1 1
1 1 1 m2 m1 1
1 1 m4 m2 m6
1 m4 1 m2 m6
m3 1 m4 m6

n1 1 x1 1 m6
1 m5 x2 x5
1 n2 1 x5 x4
n3 m5 m4 x4

1 1 n2 m3 1 x4
1 n3 n4 1 m3 x4
n3 n5 m5 1 x3

1 n5 1 n2 1 m5 x4
n5 1 n3 m5 1 m7

n1 1 n3 1 n2 1 m7 1
1 n3 1 n3 m7 1 1
1 n2 1 n3 1 m6 1 1 1
n3 n3 1 m7 a1 1 1 1

1 1 n2 1 m7 1 a1 1 1
1 n3 m7 1 1 a2 a1 1
n3 1 m6 1 1 a3 a2 a1

1 1 m7 a1 1 a3 1 a2 a2
1 m7 1 a4 1 a3 a2
m7 1 1 a2 a2 a4 1 a2
1 1 a3 a2 a2 a2 a4
1 a3 a3 a2 a2 a2 a2
a3 a3 a3 a2 a2 a2

1 a3 a3 a3 a2 a2
a3 a3 a3 a3 a2

1 a3 a3 a3 a3
a3 a3 a3 a3 1

1 a3 a3 a3 1 1
a3 a3 a3 1 1 1

1 a3 a3 1 1 1 1
a3 a3 1 1 1 1 1

1 a3 1 1 1 1 1 1
a3 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

1 1 1 1 a1 1 1
1 1 1 1 a2 1
1 1 1 1 a2 1
1 1 1 a4 1
1 1 a4 1 1
1 a4 1 1 1
a4 1 1 1 1

a5 1 1 1 1 1
1 a3 1 1 1 1
1 1 a3 1 1 1
1 1 1 a3 1 1
1 1 1 1 a3 1
1 1 1 1 1 a1 1
1 1 1 1 1 a1 1
1 1 1 1 1 a6
1 1 1 1 1 a2 a5
1 1 1 1 1 a2 a5
1 1 1 1 a4 a5
1 1 1 a4 1 a5
1 1 a4 1 1 a5
1 a4 1 1 1 a5
a4 1 1 1 1 a5

a5 1 1 1 1 1 a5
1 a3 1 1 1 1 a5
1 1 a3 1 1 1 a5
1 1 1 a3 1 1 a5
1 1 1 1 a3 1 a5
1 1 1 1 1 a3 a5
1 1 1 1 1 1 a1 a5
1 1 1 1 1 1 a1 a5
1 1 1 1 1 1
1 1 1 1 1 1

5341770548190 5812759055520 6189073507269 7412906127645

69738168204 258053224401 4493434462704 5153469830694

Figure 2. Bubblesort CA with k = 15. The initial condition 
consists of three unsorted numbers (5, 3, 2) coded in unary. 
The output array is in ascending order.

Figure 7. Evolution of a CA with k = 64 that performs exponentiation xy serially and halts 
when the result is reached. x is the left input and y, the right input. The case is shown for 
x = 2 and y = 3. Particles with similar behavior (background, input/output, memory, walls 
and moving particles) have been assigned the same color for clarity.

1 1 1 1 1 a1 1 1 1 1 1
1 1 1 1 1 a1 1 1 1 1
1 1 1 1 1 a2 a1 1 1 1
1 1 1 1 a3 a2 a1 1 1
1 1 1 a3 1 a2 a2 a1 1
1 1 a3 1 a3 a2 a2 a1
1 a3 1 a3 1 a2 a2 a2
a3 1 a3 1 a3 a2 a2

1 1 a3 1 a3 1 a2 a2
1 a3 1 a3 1 a3 a2
a3 1 a3 1 a3 1 a2

1 1 a3 1 a3 1 a3
1 a3 1 a3 1 a3 1
a3 1 a3 1 a3 1 1

1 1 a3 1 a3 1 1 1
1 a3 1 a3 1 1 1 1
a3 1 a3 1 1 1 1 1

1 1 a3 1 1 1 1 1 1
1 a3 1 1 1 1 1 1 1
a3 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Figure 1. Comparison between a k = 8 (including 
background) serial addition CA (left), where k is the number 
of colors, and a k = 5 parallel addition CA (above). The 
parallel CA uses significantly fewer steps and colors to 
perform a computation.

Using these same two approaches, we have constructed CA 
rules that perform subtraction, division, multiplication (Figure
4) and exponentiation (see Figure 7 at the far right). 
Furthermore, we have explored similar constructions for 
bitwise logic operations (AND, OR, NOT and NAND, which 
is shown in Figure 3) as well as for other simple 
computations, such as bubble sorting (Figure 2). As a 
generalization, several of the arithmetic CA rules were 
merged into one multifunction CA which can perform 
different arithmetic calculations depending on the processing 
particle that is encoded in the initial condition.

As we move from addition to multiplication to exponentiation 
(to tetration, etc.), the difficulty in programming the CA rules
increases. An alternative approach to directly programming 
the more complex arithmetic functions is to build them on 
simpler ones. For instance, a rule for multiplication can be 
directly constructed (see Figure 4) or it can be built as a 
series of embedded CA additions. Similarly, the 
exponentiation rule shown in Figure 7 is built as a series of 
multiplications, which themselves are constructed as 
embedded additions.

We have identified three types of basic 
behaviors in the arithmetic CA. Addition 
and subtraction rules are based on 
creating output and annihilating input. For 
example, in an addition operation, input at 
the right is annihilated while corresponding 
output is created next to the leftmost input. 
For higher arithmetic functions, a third type 
of behavior –memory– appears. This is 
due to the fact that in these types of 
calculations one input has to be used more 
than once before arriving at the result and 
some sort of tracking mechanism has to 
be used.

Figure 3. Bitwise 
NAND CA. Input 
at the right is 
reversed.

Figure 4. A parallel multiplication CA with k = 24 (above), and a 
serial division CA with k = 14.

1 1 1 1 d1 1 1
1 1 1 1 d2 1
1 1 1 1 1 d3
1 1 1 1 d3 x1
1 1 1 1 d4 x2 x1
1 1 1 d1 x2 x1
1 1 1 d1 x2 x1
1 1 1 d5 x1
1 1 1 x2 d6
1 1 1 d6 x2
1 1 1 d4 x2 x2
1 1 1 d4 x2 x2
1 1 d1 x2 x2
1 1 d1 x2 x2
1 1 d1 x2 x2
1 1 d5 x2
1 1 x2 d5
1 1 x2 x2 e1
1 1 x2 d3 1
1 1 d3 x1 1
1 1 d4 x2 x1 1
1 1 d4 x2 x1 1
1 1 d4 x2 x1 1
1 d1 x2 x1 1
1 d1 x2 x1 1
1 d1 x2 x1 1
1 d1 x2 x1 1
1 d5 x1 1
1 x2 d6 1
1 d6 x2 1
1 d4 x2 x2 1
1 d4 x2 x2 1
1 d4 x2 x2 1
1 d4 x2 x2 1
d7 x2 x2 1

d7 x2 x2 1
d7 x2 x2 1

d7 x2 x2 1
d7 x2 x2 1

d7 x2 1
d7 1

e3
1 1
1 1

* To whom correspondence should be addressed: jveerman@fisica.pucp.edu.pe

Figure 5. Some results of a search for subtraction rules in a CA space with k = 3. Rule 
numbers are shown beneath each graphic. Left input is 14; right input is 11.

Figure 6. (1) SW3S for density classification, {BBA → BAB,BA → AB}. (2) RW3S for density 
classification, {BA → AB,BBA → ABB}. (3) RW3S for adding integers, {BAB → AAB,ABA → BAB, 
ABB → AAB}. (4) SW3S for subtracting integers, {BBA → BAB,ABA → BB,AB → A}. (5) RW3S for 
subtracting integers, {ABA → BBB,BAA → AAB,BA → A}. (6) SW3S for adding integers,{C → BB, 
AB → CA}. (7) RW3S for adding integers, {C → BA,AB → BC}.

H1L H2L H3L H4L H5L H6L H7L


	Two methods for finding cellular automata that perform simple computationsM. Bustamante, C. Guerra, J. Veerman*Pontificia Un

