Synthesizing DNFs Using Boolean Algebra

The procedure presented in class for synthesizing disjunctive normal forms involved these steps:

- 1. Use the *DeMorgan*, $\overline{xy} \to \overline{x} + \overline{y}$ and $\overline{x+y} \to \overline{xy}$ repeatedly to distribute all negations down to variables. Use the *negation* identity, $\overline{\overline{x}} \to x$ to simplify the resulting literals.
- 2. Use distributivity, $x(y+z) \rightarrow xy+xz$ repeatedly to move all the products inside of the sums.
- 3. If you repeat Steps 1 and 2 until they no longer apply, you have synthesized an equivalent sum-of-products (SOP) form, but it is not normalized because some product clauses may not include all the variables contained in the original expression. Use the identity $X \to Xy + X\overline{y}$ as necessary to introduce variable y to clause X. Repeat as needed to introduce all the variables to every clause.
- 4. Use *idempotence*, $x x \to x$ and $x + x \to x$ to eliminate redundant terms.

Along the way, use the absorption laws, $x + xy \to x$ and $x(x + y) \to x$ and other identities to simplify until you reach Step 3.

EXAMPLE. Use boolean algebra to synthesize a DNF for $\overline{pq}(r+\overline{p+s})$.