
This is an informal presentation of Chapter 10 in Induction, Recursion and
Programming, omitting the underlying mathematical details.

Proving Programs

The logical calculus used in PVS is extended with inference rules for reasoning
about sequential programs. The introduction below presents these rules and
shows how a statement of the form “Program S is correct,” can be reduced
to pure logical propositions, or verification conditions that can be verified in a
proof validation system like PVS.

This section begins by introducing a notation for making true-false assertions
about programs. The next section gives inference rules

A Simple Algorithmic Language

The Language of Statements, Stmt, is a simple, sequential programming lan-
guage, similar in form to many languages that exist today, such as C and Java.
There are just four kinds of statements.

1. The assignment statement , has the form

v := Term

The object to the left of the assignment symbol is called an identifier , or
sometimes program variable (but never just “variable”). To the right is an
expression, Term, whose value is calculated and then associated with the
program variable from that point on, or until another value is assigned
to the same identifier. Identifiers may be simple names, such as x and
answer, or array references, such as a[i] and b[5, j].

2. A conditional statement has the form

if Test then S1 else S2

Where S1 and S2 are, themselves, statements. If the Test holds then
statement S1 executes; otherwise, statement S2 is executes. Tests are
unquantified propositions and do not have side effects.

3. A repetition statement has the form

while Test do S

Statement S is repeatedly executed so long as the Test remains true.

4. Finally, a compound statement has the form

beginS1 ;S2 ; . . . ;Sn end

Statements S1, S2, . . ., Sn are executed in order, from left to right.



〈Stmt〉 ::= 〈Ide〉 := 〈Term〉 (assignment)

if 〈Test〉 then 〈Stmt〉 else 〈Stmt〉 (conditional)

while 〈Test〉 do 〈Stmt〉 (repetition)

begin 〈Stmt〉 ; · · · ; 〈Stmt〉 end (compound)

〈Ide〉 ::= {identifier or array reference}

〈Term〉 ::= {expression in the ground type}

〈Test〉 ::= {quantifier-free predicate}

Figure 1: Partial description of the Stmt programming language.

Figure 1 shows a concise specification of the Stmt language using Backus-Naur
notation (“BNF”). The BNF grammar says nothing about what statements
mean, only what they look like.

There are no input/output operations in Stmt. We can talk about the re-
sult of a program in terms of its intial and final content. Memory is viewed
abstractly as a function from program identifiers to values of the appropriate
type. In a more complete memory model, identifiers are associated with ad-
dresses, addresses with memory content, and content with representations of
values; but we don’t need all that detail for our purposes. Figure 2 is an ex-
ample of a program in Stmt. Stmt actually describes a family of languages
as determined by the “data” over which they operate, in this case, natural
numbers.

The program labels, P, `1 and `2 are not part of the language—there is no
goto construct, so labels aren’t needed, but they are used to refer to points of
the program.

Comments written between braces, { · · · } , are called assertions. For now,
comments are optional, but they become a formal part of the language syntax,
used to reason logically about a program’s data state.

Program Correctness Assertions

Informal Definition. Let P and Q be predicate formulas over program states
and let S be a program fragment. The partial correctness assertion

{ P } S { Q }

Is a predicate that says, “If P holds initially, then just after S executes, Q
holds.” We call formula P a precondition of statement S; and we call formula
Q a postcondition.



P : { A, B ∈ N }
begin
x:= A;
y:= B ;
z := 0;
{ z + xy = AB }

`1 : while x 6= 0 do
if even?(x)
then
begin x := 1

2x; y := 2y end
else

`2 : begin x := x− 1; z := z + y end
end
{ z = AB }

Figure 2: A program in the programming language Stmt

Implicit in this definition is the assumption that S terminates. if S con-
tains an infinite loop and does not terminate, the assumption is false, making
{ P } S { Q } vaccuously true. In Figure 2 three assertions are introduced.

1. The precondition is { A, B ∈ N } ;

2. the postcondition is { z = AB } ;

3. and there is an intermediate assertion { z + xy = AB } .

These can be read “Program P computes the product of natural numbers A
and B.”

Reasoning Rules for Statements

There is a primitive inference rule for each kind of Stmt:

Assignment Rule

P ⇒ Q
[ t

v

]
{P } v := t { Q }

Q
[ t

v

]
denotes the formula obtained by substituting term t for all free occurences

of variable v in formula Q.

Example 1. Prove { z + (x + 1)y = A } z := z + y { z + xy = A } .
By the Assignment Rule, it suffices to prove

(z + (x + 1)y = A) implies
(
z + xy = A

)[ z+y

z

]



Distributing on the left, and substituting on the right, we get

( z + y + xy = A) implies
(

z + y + xy = A
)

which is trivially true.

Compound Rule

{P } S1 { Q } � { Q } S2 { R }

{P } begin S1 ; S2 end { R }

This rule says that in order to prove an assertion about two sequential state-
ments, it suffices to find an intermediate assertion, Q that serves both as a
postcondition for the first statement and as a precondition for the second.

Of course, the problem with this rule is that it seems to require the prover
to guess what the intermediate assertion is. We shall see later that this is not
the case!

Example 2. Prove { z + xy = A ∧ x > 0 }
begin x := x− 1 ; z := z + y end
{ z + xy = A }

Let intermediate assertion Q be z + (x + 1)y = A. By the Compound Rule, is
suffices to prove

{ z + xy = A ∧ y > 0 } x := x− 1 { z + (x + 1)y = A }
and

{ z + (x + 1)y = A } z := z + y { z + xy = A }

The second PCA proved in Example 1. As for the first, by the Assignment Rule,
the PCA on the right is true if(

z + (x + 1)y = A ∧ y > 0
)

implies
(
z + x y = A

)[ x−1

x

]
Substituting on the right we get(

z + xy = A ∧ y > 0
)

implies
(
z +

[
(x− 1) + 1

]
y = A

)
The 1s cancel on the right making the proposition true. The precondition x > 0
is not explicity involved in the logic, but it is necessary to assure that x − 1 is
a natural number.

Conditional Rule

{P ∧B } S1 { Q } � { P ∧ ¬B } S2 { Q }

{P } if B then S1 else S2 { Q }



The rule for if says simply to add B to the precondition for the then branch,
and ¬B to the precondition for the else branch, and evaluate them seperately.
Within the then branch you know that the test B has succeeded, and for the
else branch you know it has failed.

medskipExample 3. Prove { (x 6= 0) ∧ (z + xy = A) }
if even?(x)
then

begin x := 1
2x; y := 2y end

else
begin x := x− 1; z := z + y end

{ z + xy = A }

By the Conditional Rule, it suffices to prove

(a) { (x 6= 0) ∧ (z + xy = A) ∧ even?(x) }
begin x := 1

2x; y := 2y end
{ z + xy = A }

The proof, using the Compound rule with intermediate assertion z = x(2y)
is left as an exercise. [Do you see why this intermediate assertion was
choosen?]

(b) { (x 6= 0) ∧ (z + xy = A) ∧ ¬even?(x) }
begin x := x− 1; z := z + y end
{ z + xy = A }

This subgoal was proven in Example 2.

While Rule

{P ∧B } S { P }

{P } while B do S { P ∧ ¬B }

The subgoal above the line says assertion P is “reinstated” by the body of the
while-loop. That is, if P holds before S executes, then just after S terminates,
P again holds. P need not hold throughout S’s execution, just at the very
beginning and just after the very end. Test B may be added to the precondition
because S only executes when the while-test succeeds.

An assertion like P that satisfies the subgoal is called an invariant of the
loop. As we shall soon see, invariants are the essence of program proving. Since
Stmt has no gotos, S must execute an integral number of times, and each time
P is reinstated. Hence, if and when the while-loop terminates, P is true and
we also know at that point B is false.



Example 4. Prove { z + xy = A }
while x 6= 0 do

if even?(x)
then
begin x := 1

2x; y := 2y end
else
begin x := x− 1; z := z + y end

{ z = A }
Exercises 1–3 prove that with precondition x 6= 0 and z + xy = A, z + xy = A
the if-statement establishes postcondition z + xy = A. By the While Rule we
may infer that the while-loop establishes postconditions z +xy = A and x = 0.
Hence

A = z + xy = z + 0y = z

Using the rules

In using these rules it is often the case that what the rule produces is not exactly
what is wanted. For instance, in Example 4 the desired postcondition is z = A
but the While Rule yields postconditions x 6= 0 and z + xy = A. Since these
two conditions imply z = A, it is reasonable to deduce that z = A also holds.
This intuition is summarized in the Strengthening Rule, introduced next.

The Compound Rule says that in order to prove

{ P } begin S1 ; S2 end { R }

one must provide an intermediate assertion, Q, that holds between S1 and S2.
Except in one case, there is no need to guess what that intermediate assertion
is. What Q should be depends on what kind of statement S − 2 is.

Strengthening Rules

P ⇒ P ′ � { P ′ } S { Q′ } � Q′ ⇒ Q

{P } S { Q }

It follows from the definition of { P } S { Q } that it is valid replace a postcon-
dition, P with a stronger condition, P ′ that it implies. Similarly, postcondition
Q may be replaced by a weaker condition, Q′, provided Q′ ⇒ Q.

Block Flattening

{P } begin S1 ; begin S2 ; S3 end end { Q }

{P } begin S1 ; S2 end ; S3 end end { Q }



Compound begin-end blocks are associative. No matter how they are nested, if
the left-right order of the statements Si is the same, the programs do the same
thing. The double line is used above to indicate that the rule is valid in both
directions. By this rule, we may include any number of statement in a block,

begin S1 ; S1 ; . . . ; Sn end

Assignment Elimination, Left

{P } S { Q
[ t

v

]
} � Q

[ t

v

]
⇒ Q

[ t

v

]
{P } begin S ; v := t end { Q }

If the rightmost statement in a compound block is an assignment statement the
obvious choice of intermediate assertion is Q

[ t

v

]
. By the Assignment Rule, this

reduces one subgoal to a tautology

Assignment Elimination, Right

{P ∧ (v = t) } S { Q }

{P } begin v := t ; S end { Q }
provided v does not
occur free in t or P

It is intuitive that an assignment statement will accomplish its assignment and
make the program variable value equal to that of the assigning term. However,
this rule may be invalid in cases where the assigned variable is “used” in the
assigning term or in the precondition. For example, the assignment x := x + 1
does not accomplish x = x + 1, which is impossible. This rule is typically used
in program initialization, but it is better not to use it unless the side condition
is well understood.

Conditional Elimination

{P } S1 { B ⇒ Q ∧ ¬B ⇒ Q′ } � { Q } S2 { R } � { Q′ } S3 { R }

{P } begin S1 ; if B then S2 else S3 { R }

The idea of this rule is to analyze the two branches independently, as though
the subgoals were

{ P } begin S1 ; S2 end { R }

and
{ P } begin S1 ; S3 end { R }

This will result in intermediate assertions Q and Q′ for the then and else
branchs, respectively. The intermediate assertion for the conditional, then, must
assure that the right intermediate assertion holds, depending on the outcome of
the test.



While Elimination

{P } S1 { I } � { I } while B do S2 { Q }

{P } begin S1 ; while B do S2 { Q }

The previous four elimination rules provide an intermediate assertions for all
cases but those involving while statements. Such an intermediate assertion
must be a loop invariant to enable use of the While Rule. It is sometimes but
not always possible to “guess” what the invariant is.

We will, instead, require the programmer to provide the invariants! Who else
is better able to explain the purpose of the loop?

Change the syntax of the Stmt programming language in Figure 1, replacing
the clause for while statements with

〈Stmt〉 ::=
...

while 〈Test〉 inv {〈Assertion〉} do 〈Stmt〉
...

With inviants now required, we have enough elimination rules to mechanically
(i.e., without guessing) reduce any program correctness assertion to a set of
purely logical subgoals, called verification conditions. If all the verification con-
ditions prove true, then the PCA we started with is true as well.

The onus is on the programmer to provide the key invariant assertions. In
essence, the invariants explain how the loop “reaches” its postcondition. These,
together with the precondition and postcondition are all that is needed to render
an assertion about a program to mathematical propositions.

Including formal invariants is a learned skill, but think about it this way:
they say the least that has to be said for someone to understand the program.


