
Probabilistic analysis of success and failure rates of

candidates generation algorithms for the frequent

itemsets mining problem

Minh Tang

mhtang@cs.indiana.edu

Department of Computer Science

Indiana University Bloomington

Abstract

¿is paper consider the success and failure probability of candidate gen-
eration algorithms for the frequent itemsets mining problem under several
probability model. Results for one of the models had been obtained previ-
ously, but with a complex derivation. Our re-derivation of these results is
simpler and employed a concentration inequality for the sum of independent
Bernoulli random variables. Our results for the other models employed con-
centration inequalities formartingales and is applicable tomodels where there
is dependence between the transactions. From the success and failure proba-
bility we can estimate the size of the maximum frequent itemset.

1 Introduction

¿e frequent itemsets mining problem is the problem of given a set of items I, a set

of transactionsD, and a threshold value σ, �nd all subsets of I whose occurrences

inD is at least σ. ¿emining of frequent itemsets is an important problem in many

data mining tasks, especially in the context of �nding association rules [1].

¿e class of candidates generation algorithms includes theApriori algorithm [1] and

the Eclat algorithm [13], two of the most widely used algorithm in frequent item-

set mining. Since the running time of any frequent itemsets mining algorithm is

exponential in the worst case, the average time analysis is more important in the

understanding of the e�ciency of the algorithms. Previous work had been done in

[6] regarding the average time analysis of the Apriori and Eclat algorithms under
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the assumption that for every subset J b I of items, the probability that a trans-

action T > D contains J is P�J�, independently of all other transactions T� > D.

Although it’s not explicitly computed in [6], the analysis done in [6] also allowed

us to bound probabilistically the maximum size of the frequent itemsets, i.e. there

exist a constant µ such that the probability that the maximum size of the frequent

itemsets exceeds µ � δ decreases exponentially with increasing δ A 0. Given that in

general, we cannot approximate the maximum size of the frequent itemsets in a set

of n items within a factor of nє for some є A 0 unless P � NP [3], the probabilis-

tic bound in [6] is therefore very important in understanding the e�ciency of the

above mentioned algorithms.

Our paper is then composed of two parts. ¿e �rst part is a re-derivation of the

important results for the success and failure probability of the Apriori and Eclat al-

gorithm in the vein of [6], but with a much simpler argument. ¿e second part

is the use of martingales to derive additional results for the success probabilities

for the mentioned algorithms when the probability model doesn’t assume indepen-

dence between the transactions. ¿e organization of the paper is then as follow. We

introduce the Apriori algorithm and the associated probability model in Section 2.

We present in Section 3 and 4 our analysis of the success and failure probabilities

of the Apriori and Eclat algorithm, respectively, along with comparisons between

our results and those obtained in [6]. Section 5 apply the bounds for the success

probabilities to determine the size of the largest frequent itemset for two simple

probability assignments. ¿e application of martingales’ concentration inequalities

to the analysis of the success probabilities is investigated in Section 6.

2 Background

Let I � �i1 , i2 , . . . , in� be a set of items. A set of transactions T is a family of subsets

of I. ¿e support of a subset I b Iwith respect to a set of transactionsT , supp�I,T�,
is the number of transactions T > T such that I b T. ¿e subset I b I is frequent

in T if supp�I,T� C σ for some threshold value σ A 0. ¿e frequent set mining

problem is then, given the set of items I and the set of transactions T , �nd all I b I

such that I is frequent with respect to T .

¿e Apriori algorithm for mining frequent itemsets is a breadth-�rst, level-wise al-

gorithm where for each level k, the Apriori algorithm �rst prunes all infrequent

itemsets of size k and then generates the candidate itemsets of size k � 1. A set J of
size k � 1 is a candidate if and only if all of its subset of size k is frequent, i.e. not

pruned by the Apriori algorithm at level k. ¿e algorithm stops when no other fre-
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quent itemsets can be found.

We say that a candidate set J is a success if J is also frequent, otherwise, J is a failure.
Since the support of J in T is computed for any candidate set J, we would prefer

that J is also a success. ¿e success and failure probabilities of the candidate sets

are therefore important in the analysis of the average running time of the Apriori

algorithm. If the failure probabilities of the candidate sets are small, then almost all

of the computational work done by the Apriori algorithm are necessary. Otherwise,

if the success probabilities of the candidate sets are small, then a lot of the compu-

tational work done are in some sense useless.

¿e analysis that we will be doing in this paper is then the analysis of the success

and failure probabilities of the candidate sets. Here we discussed brie�y the model

and approach used in [6]. Given a set I b I, the probability that a transaction T > T
satisfy T  I is denoted by P�I�. We also assume that the transactions inT are inde-

pendent. ¿en for a given I, we can view each transactions T > T as a Bernoulli trial

with p � P�I� and q � 1� P�I�. ¿e success probability S�I� can then be written as

([6], Eq. 3.2)

S�I� �Q
jCσ �bj��P�I�� j�1 � P�I��b� j

Let’s assume that I � �i1 , i2 , . . . , im� is of size m and denote by I1 , I2 , . . . , Im all the

m subsets of I of size m � 1. I is a candidate frequent set during the execution of

the Apriori algorithm if the subsets I1 , I2 , . . . Im are all frequent. If we let j0 be the
number of transactions containing all items in I and jk , 1 B k B m, be the number

of transactions containing all items of Ik without containing all items of I, then I is
a candidate if

j0 � j1 C σ , j0 � j2 C σ , � � � , j0 � jm C σ (2.1)

For ease of notation, let I0 � I, and de�ne Q�Ik� for 1 B k B m � 1 as follows

Q�I0� � P�I�, Q�Ik� � P�Ik� � P�I� 1 B k B m, Q�Im�1� � 1 � mQ
k�0Q�Ik�

So Q�Ik� for 1 B k B m is the probability that a transaction contains Ik but not I
while Q�Im�1� is the probability that a transaction doesn’t contain any of the Ik for
1 B k B m. Finally, let jm�1 � b � j0 � j1 � � � � � jm . ¿e candidate probability C�I�
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and failure probability F�I� can then be written as ([6], Eq. 3.35)

C�I� � Q
j0

j1Cσ� j0
j2Cσ� j0�
jmCσ� j0 � b

j0 , j1 , . . . , jm , jm�1�m�1M
k�0 Q�Ik� jk (2.2)

F�I� � Q
j0�σ

j1Cσ� j0
j2Cσ� j0�
jmCσ� j0 � b

j0 , j1 , . . . , jm , jm�1�m�1M
k�0 Q�Ik� jk (2.3)

¿e results in [6] for the Apriori algorithm were derived by applying the Cherno�

bounds [4] to Eq. (2.1) through Eq. (2.3). We will explicitly state those results in the

following section.

3 Success & failure probabilities: Apriori algorithm

Our derivation of the success and failure probability of the Apriori algorithm is

based on a di�erent approach than that of [6] which was described in the previ-

ous section. Let XI be a random variable with XI � S�T > T � I b T�S. We see that

XI had a binomial distribution with probability p � P�I� and n � ST S � b.Given a

set I, the characteristic function ξI � T ( �0, 1� is de�ned as
ξI�T� � ¢̈̈�̈̈¤1 if T  I

0 otherwise
(3.1)

¿e set I is therefore a success ifPT>T ξI�T� � XI C σ. If S�I� is the success proba-
bility of the set I, then from the above reasoning,

S�I� � Pr�Q
T>T ξI�T� C σ� (3.2)

¿e following inequality on the concentration of the sum of independent random

variables is essential to our analysis [9].

¿eorem 3.1: Let ξ1 , ξ2 , . . . , ξn be independent random variables, Xk � E�Xk� B η
for all k. We consider the sum X � ξi � ξ2 � � � � � ξn , with mean µ and variance V .

¿en for any t C 0

Pr�X � µ C λ� B e
� λ2

2V�1�ηt~3V� (3.3)
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Since the set of transactions are assumed to be independent, given a subset I b I,

the expected number of transactions containing I is E�XI� � bP�I� where b � ST S
is the number of transactions. Suppose that bP�I� B σ, then the success probability
S�I� can be rewritten as

S�I� � Pr�XI C σ� � Pr�XI C bP�I� � λ�
where λ � σ � bP�I�. Each of the ξk is a Bernoulli random variable with mean P�I�
and variance P�I��1 � P�I�� so µ � bP�I� and V � bP�I��1 � P�I��. In addition,

η �max�P�I�, 1 � P�I��. If η � o�b�, then by Eq. (3.3), we have

S�I� � Pr�XI C bP�I� � λ� B e
� λ2

2V�1�ηλ~3V� B e� λ2

2V
�1�o�1�� (3.4)

We will now state the corresponding result, ¿eorem 3.4.1 from [6].

(¿eorem A): When P�I� B σ~b, the following upper bound for S�I� can be found

S�I� B e�bα21 ~�2P�I��1�P�I����O�bα31 �1�P�I���2� (3.5)

where α1 � σ~b � P�I�. In this case S�I� goes to 0 rapidly with increasing α1.
If we ignore the less signi�cant terms, the o�1� term in (3.4) and the O�bα31 � term
in Eq. (3.5), then we see that their bounds are in fact equivalent. In both cases, the

success probability S�I� decreases rapidly towards 0 as λ increases.
On the other hand, if bP�I� C σ, then the success probability can be written as

S�I� � Pr�XI C σ� � 1 � Pr�XI B σ � 1� � 1 � Pr�XI B bP�I� � λ�
where λ � bP�I� � �σ � 1�. We cannot use Eq. (3.3) directly since the inequality in

Eq. (3.3) is only one-sided. However, the random variables ξ�k with ξ�k � 1 � ξk has
mean 1 � P�I� and variance P�I��1 � P�I��. Now,

Pr�X B µ � λ� � Pr�b � X C b � �µ � λ�� � Pr�Y C µ� � λ�
where Y � P ξ�k � P �1 � ξk� and µ� � E�Y�. ¿erefore, since the variance of Y is

identical to the variance of X, we have

Pr�X B µ � λ� B e
�λ2
2V

�1�o�1�� (3.6)

¿e success probability S�I� is then
S�I� C 1 � Pr�X B µ � λ� C 1 � e

�λ2
2V

�1�o�1�� (3.7)

¿e corresponding result from [6] is ¿eorem 3.4.2
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(¿eorem B): When P�I� C �σ � 1�~b, we have the following lower bound
S�I� C 1 � e�bα22~�2P�I��1�P�I����O�bα32 P�I��2� (3.8)

with α2 � P�I� � �σ � 1�~b. In this case, S�I� goes to 1 rapidly with increasing α2.
Once again, we see that the bounds given by Eq. (3.7) and Eq. (3.8) are equivalent.

To analyze the bounds for the failure probability F�I� of a candidate set I, we �rst an-
alyze the bounds for the candidacy probability C�I� of I. Since C�I� � S�I�� F�I�,
the bounds for the failure probability will follows from the bounds for C�I� and

S�I�. Let I be the set of items under considerations where SIS � m. Let I1 , I2, . . . , Im
be the subsets of I of size m � 1. ¿e set I is a candidate if all the I j, 1 B j B m are

frequent. We therefore have the following simple bounds on C�I�.
S�Imin�m B C�I� B S�Imin� B S�Imax� (3.9)

where Imax and Imin are subsets of I, S�Imax� C S�I j� C S�Imin� for all 1 B j B m.

Now, if bP�I j� � σ for any IJ , then by Eq. (3.4), S�IJ� approaches 0 rapidly as

λ j � σ � bP�I j� increases. ¿erefore, Eq. (3.9) indicates that C�I� approaches 0

rapidly as λ j increases. Since C�I� approaches 0, F�I� also approaches 0 rapidly as
λ j increases. In short, we have

F�I� B C�I� B S�I j� � Pr�XI j C bP�I j� � λ j� B e�λ2j�1�o�1��~2Vj (3.10)

where Vj � bP�I j��1 � P�I j�� is the variance of XI j . Of course, we want to chose

the set I j whose λ j � σ � bP�I j� is maximum. We state the corresponding result,
¿eorem 3.5.1 from [6]

(¿eorem C): Let Q�Ik� be P�Ik� � P�I� for 1 B k B m and Q�Imin� be the min-
imum values of the Q�Ik�. Also let l be the number of indices k such that Q�Ik� �
Q�Imin�. In the region Q�I��P�I� B σ~b, F�I� goes rapidly to 0. In particular, when
α3 � σ~b � �Q�I� � P�I��

F�I� B e�blθα23~�2�Q�I��P�I���l�1�P�I��l�Q�I��P�I��2 �� (3.11)

where θ is used to represent a function that approaches 1 in the limit.

¿e bound in Eq. (3.10) is in reality a bound for C�I� rather then a bound on F�I�
while Eq. (3.11) is a bound for F�I� directly. However, if we let ν1 and ν2 be the
exponents in Eq. (3.10) and Eq. (3.11), respectively, then ν1 � ϑν2 where SϑS � 1.
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Determining whether Eq. (3.10) or Eq. (3.11) gives a better bound seems to be te-

dious and unexciting, in our opinion, since in both cases, the failure probability and

candidate probability both decrease to 0 rapidly as λ j, or equivalently, α3 increases.

If bP�I� C σ, then since S�I� approaches 1, C�I� also approaches 1 and F�I� then
approaches 0. In fact, with C�I� B 1, Eq. (3.7) gives

F�I� � C�I� � S�I� B 1 � �1 � e� λ2

2V
�1�o�1��� B e� λ2

2V
�1�o�1�� (3.12)

where λ � bP�I� � �σ � 1�. Once again, the bound in Eq. (3.12) coincides with the
corresponding result, ¿eorem 3.5.2, from [6].

¿e only other case which we need to consider is if bP�I� B σ B bP�I j� for all
I j. From the de�nition of S�I j�, we have

S�I j� � Pr�XI j C σ� � 1 � Pr�XI j B σ � 1�� 1 � Pr�XI j � bP�I j� B λ j�C 1 � e�λ2j�1�o�1��~2Vj

(3.13)

where λ j � bP�I j� � �σ � 1� and Vj � bP�I j��1 � P�I j�� is the variance of XI j .

¿erefore, from the simple bound in Eq. (3.9), we have

C�I� C �1 � e�λ2min�1�o�1��~2Vmin Ǒm (3.14)

where λmin and Vmin corresponds to the S�Imin�. We now use the following simple

asymptotic estimate for the value of �1 � x�k
Proposition 3.2: Let 0 � x � 1. ¿en, for any positive integer k�1 � x�k C �1 � kx� (3.15)

From Eq. (3.14) and Proposition 3.2, we have

C�I� C 1 �me�λ2min�1�o�1��~2Vmin (3.16)

¿erefore, for �xed m, C�I� � 1 rapidly as λmin increases. Since bP�I� � σ, by the
Eq. (3.4), S�I� � 0 as λ � σ � bP�I� increases. ¿erefore, F�I� � 1 as λ increases.
In short,

F�I� � C�I� � S�I� C 1 � e� λ2

2V
�1�o�1�� �me�λ2min�1�o�1��~2Vmin (3.17)

¿e corresponding result, ¿eorem 3.5.3 in [6] is
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(¿eorem D): Let α1 � σ~b � P�I� and βk � P�Ik�� �σ � 1�~b for 1 B k B m where
α1 and the βk are all non-negative. ¿en we have the following lower bound

F�I� C 1 � e�bα21 ~�2P�I��1�P�I����O�bα31 �1�P�I���2�� mQ
k�1 e�bβ2k~�2P�Ik��1�P�Ik ����O�bβ3k �P�Ik ���2� (3.18)

Again, we see that the bound in Eq. (3.17) and Eq. (3.18) are very similar. In fact, the

di�erence between the bound given by Eq. (3.17) and that given by Eq. (3.18) is the

last term in the right hand side. ¿e term in Eq. (3.18) is a sum over the βk while Eq.
(3.17) is m times the minimum term λmin. We believe that the bound given by Eq.

(3.18) might be slightly better, but in any case both bounds show that F�I� increases
to 1 rapidly as the λmin and the α1 , βk increases.

We now summarize the results of the preceding analysis. I b I is a set of m items.

1. If bP�I� A σ, then S�I� � 1 rapidly as λ � bP�I�� �σ � 1� increases. Since we
have C�I� � S�I� � F�I�, F�I� � 0 rapidly with increasing λ.

2. If bP�I j� � σ for any I j ` I with SI j S � m � 1, then C�I� � 0 rapidly with in-

creasing λ j � σ�bP�I j�. In this scenario, both S�I� and F�I� also approaches
0 rapidly with increasing λ j.

3. If bP�I j� A σ A bP�I� for all I j ` I with SI j S � m � 1, then C�I� � 1 rapidly as

the λmin of all the λ j � bP�I j� � �σ � 1� increases. However since σ A bP�I�,
S�I� � 0 rapidly with increasing λ � σ � bP�I�. In this scenario, F�I� � 1

rapidly as both λmin and λ increases.

¿e above summary indicates that the number of transactions that contains the set

I is concentrated around the mean µ � bP�I�. But we can say a little more. From
Eq. (3.4) and Eq. (3.7) we have

Pr�SXI � bP�I�S C t� B 2e� t2

2V
�1�o�1��

Now, e� t2

2V �1�o�1�� is small when t2 A 2V , i.e. when t � Ω�º2V� � Ω�»bP�I��1 � P�I���.
¿ewidth of the concentration interval of XI around bP�I� is thenO�»bP�I��1 � P�I���.
If P�I� is not small enough, then thewidth of the concentration interval will be large
and the resulting bounds for S�I� and F�I�will beweaker. Another equivalent state-
ment to Eq. (3.4) and Eq. (3.7) is that

Pr�SXI � bP�I�S C єbP�I�� B 2e�є2bP�I�~2�1�P�I��
which indicates clearly that XI is tightly concentrated around µ � bP�I�.
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4 Success and failure probabilities: Eclat algorithm

¿e Eclat algorithm [13] is another candidate generation algorithm for frequent

itemset mining. ¿e Eclat algorithm, contrary to the Apriori algorithm, is a depth-

�rst search algorithm. In the Eclat algorithm, a set I is a candidate if two special
subsets I1 and I2 of I is frequent. ¿e set I1 is the parent of I in the depth-�rst search
tree, i.e. I1 is the set I with the last augmented item removed. ¿e set I2 is the set I
with the second-to-last augmented item removed. We will now see that the analysis

of S�I� , F�I�, and C�I� of the Apriori algorithm can be easily adapted to that of the

Eclat algorithm.

¿e success probability S�I� is straightforward. ¿e analysis of S�I� in Section 3 de-
pends only the probability P�I� and the number of transactions b in the database.
¿erefore, the success probability for the Eclat algorithm has identical bounds to

that for the Apriori algorithm. ¿e candidacy probability C�I� is also straightfor-
ward. For the Eclat algorithm, Eq. (3.9) can be replaced by

min�S�I1�, S�I2��2 B C�I� Bmin�S�I1�, S�I2�� Bmax�S�I1�, S�I2�� (4.1)

¿erefore, the bounds for C�I� and F�I� given by Eq. (3.11) and Eq. (3.12) remains
the same. ¿e bounds for F�I� in Eq. (3.17) is then replaced by

F�I� � C�I� � S�I� C 1 � e� λ2

2V
�1�o�1�� � 2e�λ2min�1�o�1��~2Vmin (4.2)

where λmin and Vmin correspond to the set I j whose S�I j� � min�S�I1�, S�I2��. In
short, we can conclude that relaxing the candidacy requirement doesn’t worsen the

bound for the success probability. ¿e bound for the failure probability is worsen

only when the set I is likely to be infrequent since the relaxed candidacy requirement
leads to a worse bound for the candidacy probability and since the bound for the

success probability stays the same, the bound for the failure probability worsen.

5 Maximum frequent itemsets: some examples

We will now attempt to use the insights from Section 3 regarding the success prob-

ability S�I� to analyze the size of the largest frequent set I under several probability
assignments to P�I�, the probability that a transaction T contains the set of items I.
Our probability model is as follow

1. ¿e items in I are picked at random from the set of items I, with the proba-

bility that an item i > I belongs to I with probability p.
9



2. ¿e set I b I are such that

Pr�I � �i1 , i2 , . . . , im�� � e�µµm
m!�nm�

where n � SIS is the total number of items in I. ¿is corresponds to the situ-

ation where the number of items in a transaction T follows a Poisson distri-

bution with mean µ for some constant µ.

In case 1 above, the probability that a transaction T contains the set I is pm where

m � SIS. ¿is can be seen easily since

Pr�T  I� � Pr�i1 > T 9 i2 > T 9� 9 im > T� � M
1BkBmPr�ik > T� � pm

¿erefore, since bP�I� � σ implies that S�I� � 0 as σ � bP�I� increases, we have
that, in order for I to be frequent,

bP�I� � bPr�T  I� � bpm C σ � m B log σ
b

log p
� θ1 (5.1)

and so for case 1, the size of the largest frequent set is tightly concentrated around

θ1. In fact, if I is a set of size θ1, then P�I� � pθ1 and so the varianceV � bpθ1�1�pθ1�.
Since thewidth of the concentration interval isO�»bpθ1�1 � pθ1� � O�»σ�b � σ�~b�,
if σ � bє for some є A 0, then the concentration interval will have width bє~2.
Case 2 is a little more complicated. If I is a set of items in I with SIS � m, then
the set

Jm�k � �J b I � J  I , SJS � m � k� (5.2)

has size SJm�k S � �n�m
k
� since given a J > Jm�k , we can chose the elements of J � I in�n�m

k
� ways. Since T  I implies that T > Jm�k for some k C 0 and that

Pr�Jm�k� � e�µµm�k�n�m
k
��m � k�!� n

m�k� (5.3)
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we have

Pr�T  I� � n�mQ
k�0 Jm�k� n�mQ
k�0 e�µµk�m�n�mk ��m � k�!� n

m�k�� n�mQ
k�0 e�µµk�m�n �m�!�n �m � k�!�m � k�!

n!�m � k�!�n �m � k�!k!� e�µµm�n �m�!
n!

n�mQ
k�0 µk

k!B e�µµm�n �m�!
n!

eµB µm

n�n � 1��n � 2� . . . �n �m � 1� � F�m�
(5.4)

We want bP�I� � bPr�T  I� to be at least as large as σ so that I is likely to be
frequent. Now, since Pr�T  I� B F�m�, if F�m� B σ~b, then I is likely to be
infrequent. If we let θ2 be the value of m such that F�m� B σ~b, then the size of the
largest frequent set I is tightly concentrated around θ2.

6 Martingale methods

¿e success and failure probabilities of the Apriori algorithm was analyzed in Sec-

tion 3 under the probability assumption that for any given subset I of items, the
probability that a transaction T > T contains I is P�I�, independent of any other
transaction T� > T . ¿is probability model is from [6]. An obvious generalization

of the above mentioned probability model will then be to remove the assumption of

independence. ¿is then is the goal for our analysis in this section.

¿e key idea of the analysis in Section 3 is the investigation of Eq. (3.2)

S�I� � Pr�Q
T>T ξI�T� C σ�

where the ξI�T�,T > T are independent. If we now remove the assumption of inde-

pendence of the transactions T > T then the above sum is a sum of possibly depen-

dent random variables ξT . Our analysis of the modi�ed sum will depend on what

is known as martingales and their concentration inequalities. Before describing the

notion of martingales, we will give a brief discussion of conditional expectation.
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De�nition 6.1: Let X and Y be two random variables. We de�ne the expression

E�XSY � y� as
E�XSY � y� �Q

x

xPr�X � xSY � y� (6.1)

where the sum is over all x in the range of X. ¥
From the above de�nition we can easily show the following result

Proposition 6.2: For any random variables X and Y

E�X� �Q
y

Pr�Y � y�E�XSY � y� (6.2)

where the sum is over all values y in the range of Y and all of the expectations exist.

¿e conditional expectation is then de�ned in terms of De�nition 6.1 as follow

De�nition 6.3: Let X and Y be two random variables. ¿e conditional expectation
of X given Y , E�XSY�, is the random variable that takes on the value E�XSY � y�
whenever Y � y. ¥
We will also need the following property of conditional expectation.

Proposition 6.4: Let X, Y, and Z be random variables. We have

E�XSZ� � E�E�XSY 9 Z� SZ� (6.3)

With the above de�nitions in place, we can now describe the notion of martingales.

De�nition 6.5: A sequence of random variables Z0 , Z1 , . . . is amartingalewith re-
spect to the sequence X0 , X1 , . . . if for all n C 0 the following conditions hold

• Zn is a function of X0 , X1 , . . . , Xn

• E�SZnS� Bª
• E�Zn�1SX0 , X1 , . . . , Xn� � Zn ¥

It’s not assumed in the above de�nition that the sequences �Xi� and �Zi� are dis-
tinct. In fact, �Zi� can be a martingale with respect to itself. ¿e simplest example

of a martingale is the following gambler’s situation. Let �Xi� be a sequence of fair
games, i.e. E�Xi� � 0 for all i, and let Zi be the sumof the X j, j B i. Zi then represent

the total winning of the gambler a er i games. Now,

E�Zi�1SX0 , . . . , Xi� � Zi �E�Xi�1� � Zi
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and so the �Zi� is a martingale with respect to �Xi�.
Given a �nite sequence of random variables �Xi�, 0 B i B n we can constructed
a martingale �Zi�with respect to �Xi� by the following process. Let Y be a random

variable depending on the �Xi�. ¿en for any i, de�ne the random variable Zi as

Zi � E�Y SX0 , X1 , . . . , Xi�, for i � 0, 1, . . . , n (6.4)

¿e �Zi� is then a martingale with respect to the �Xi�. We can see this as follows
E�Zi�1SX0 , X1 , . . . Xi� � E�E�Y SX0 , X1 , . . . , Xi�1� SX0 , X1 , . . . , Xi�� E�Y SX0 , X1 , . . . , Xi� by Proposition 6.4� Zi

¿e above construction of the �Zi� is known as the Doob’s martingale process. ¿e�Zi� is in essence the expected value of Y as we reveal one by one the elements of

the sequence �Xi�. ¿e application of martingales to our analysis is then as follow.

We restate the key equation for the success probability

S�I� � Pr�Q
T>T ξI�T� C σ� (6.5)

where the ξT are not necessarily independent. Each of the ξT is either 1 or 0, repre-
senting whether I b T or I ~b T, respectively. Let’s now order the ξT arbitrarily from
1 to b where b � ST S. Let Sb be the sum of the ξi . We de�ne the random variables

Zi as Zi � E�Sb Sξ0 , ξ1 , . . . , ξi� with ξ0 � 0. ¿e �Zi� is then a martingale by the
Doob’s martingale process. ¿e following martingales concentration inequality is

important in many applications of martingales [9]

¿eorem 6.6: Let Z0 , Z1 , . . . , Zn be a martingale with ak B SZk�1�Zk S B bk for each
0 B k B n � 1, with suitable constants ak , bk . ¿en for any t C 0

Pr�SZn � Z0S C t� B 2e�2t2~P �bk�ak�2 (6.6)

For example, the case where the ξT are independent leads to

0 B SZk�1 � Zk S Bmax�p, 1 � p� � τ

Since Z0 � E�Sb� � bP�I�, and Zn � Sb itself, we have

Pr�SSb � bP�I�S C t� B 2e�2t2~2bτ2
13



¿e application of ¿eorem 6.6 requires that we be able to �nd suitable constants

ak , bk such that ak B SZk�1 � Zk S B bk . ¿is might not always be possible in the

general case since the dependency of the random variables ξk could be such that
for some index i, if ξi � 0 then all other ξk is also 0, while if ξi � 1 then all other

ξk is also 1. In such a case, the value of ai and bi will be too large for the bound
in Eq. (6.6) to be useful. However, some simpli�cation assumptions can be made

that will improve the applicability of¿eorem 6.6 to themartingale �Zi�. ¿emost

obvious assumption is that the random variables ξk are at most r dependent for
some small constant r, i.e. that we can partition the ξk into blocks where the size
of each block is at most r and that the blocks are independent from each other. If

this is the case, then we rearrange the ξk so that any two ξi and ξ j belonging in the
same block of size θ must have S j � iS B θ. ¿e sum Sb can now be rewritten as

Sb � ζ1 � ζ2 � � � � � ζl where l is the number of blocks and the ζ j are the sum of the

ξk in the same block and so are independent of each other. ¿e martingale �Zk�,
1 B k B l with Zk � E�Sb Sζ1 , ζ2 , . . . , ζk� then satisfy SZk�1 � Zk S B r since Sζ j S B r
for any j. Under this assumption, with Z0 � µ the expected number of transactions
containing I

Pr�SZl � Z0S C t� � Pr�SSb � µS C t� B 2e�2t2~lr2 (6.7)

where l is the number of blocks. If σ A µ, then S�I� decreases rapidly towards 0 as
t � σ � µ increases. Otherwise, if σ � µ, then S�I� increases rapidly towards 1 as
t � µ � σ increases.

Another application of the martingale method is the following probability model.

We assume that the set of transactions T is sampled without replacement from the

set of all non-empty subsets of I, i.e. the probability model is the hypergeometric

distribution. ¿e set I b I is frequent if, out of the b sampled transactions at least
σ of the them contains I. Now, the number of transactions that contains I is 2SI�IS
while the total number of non-empty subsets of I is 2SIS � 1. ¿e expected number

of transactions that contains I is then, from the expectation of the hypergeomet-

ric distribution, b2
SI�IS

2SIS�1 . We now derive the expression for the martingale �Zk�. Let
νk � ξ1 � ξ2 � � � � � ξk . If the �rst k sampled transactions have νk transactions that
contains I, then the expected number of transactions that will contain I in the re-

maining b � k transactions to be sampled will be
�b�k��2SI�IS�νk�

2SIS�k�1 . ¿erefore

Zk � E�Sb Sξ1 , ξ2 , . . . , ξk�� νk �E�ξk�1 � ξk�1 � � � � � ξb Sξ1 , ξ2 , . . . , ξk�� νk � �b � k��2SI�IS � νk�
2SIS � k � 1
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and so

Zk�1 � Zk � νk�1 � νk � �b � k � 1��2SI�IS � νk�1�
2SIS � k � 2

� �b � k��2SI�IS � νk�
2SIS � k � 1

(6.8)

Now, νk�1 � νk � ξk�1 > �0, 1�. If ξk�1 � 0, then νk�1 � νk and soSZk�1 � Zk S � U �b � k � 1��2SI�IS � νk�
2SIS � k � 2

� �b � k��2SI�IS � νk�
2SIS � k � 1

U � ak

Otherwise, if ξk�1 � 1, then νk�1 � νk � 1 andSZk�1 � Zk S � U1 � �b � k � 1��2SI�IS � νk � 1�
2SIS � k � 2

� �b � k��2SI�IS � νk�
2SIS � k � 1

U� U1 � b � k � 1

2SIS � k � 2
� �b � k � 1��2SI�IS � νk�

2SIS � k � 2
� �b � k��2SI�IS � νk�

2SIS � k � 1
UB U1 � b � k � 1

2SIS � k � 2
U � U �b � k � 1��2SI�IS � νk�

2SIS � k � 2
� �b � k��2SI�IS � νk�

2SIS � k � 1
U� bk

By Eq. (6.6), we therefore have

Pr�SZb � Z0S C t� � Pr�SSb � µS C t� B 2 exp��2t2~P � 2SIS�b�1
2SIS�k�2�2� B 2e�2t2~b (6.9)

where µ � b2SI�IS
2SIS�1 . Once again, if σ A µ, then S�I� decreases rapidly towards 0, oth-

erwise if σ � µ, then S�I� increases rapidly towards 1.
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