
Flow-Sensitive Type Recovery in Linear-Log Time

Michael D. Adams ∗, Andrew W. Keep∗, Jan Midtgaard†, Matthew Might‡, Arun Chauhan∗, R. Kent Dybvig∗

Abstract
The flexibility of dynamically typed languages such as
JavaScript, Python, Ruby, and Scheme comes at the cost of
run-time type checks. Some of these checks can be elim-
inated via control-flow analysis. Traditional control-flow
analysis (CFA) is not ideal for this task, however, as it ig-
nores flow-sensitive information that can be gained from dy-
namic type predicates, such as JavaScript’s instanceof or
Scheme’s pair?, and from type-restricted operators, such as
Scheme’s car. Yet, adding flow-sensitivity to a traditional
CFA worsens the already significant compile-time cost of
traditional CFA. This makes it unsuitable for use in just-in-
time compilers.

In response, we have developed a fast, flow-sensitive
type-recovery algorithm based on the linear-time, flow-
insensitive sub-0CFA. The algorithm has been incorporated
into the commercial Chez Scheme compiler, where it has
proven to be effective, justifying the elimination of about
60% of run-time type checks in a large set of benchmarks.
In practice, the algorithm processes on average over 75,000
lines of code per second and scales well asymptotically, run-
ning in only O(n log n) time. We achieve this compile-time
performance and scalability through a novel combination of
data structures and algorithms.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Optimization

General Terms Languages

Keywords Control-flow analysis, flow sensitivity, path sen-
sitivity, type recovery

1. Introduction
Dynamically typed languages such as JavaScript, Python,
Ruby, and Scheme are flexible, but this flexibility comes at

∗ Indiana University, †Aarhus University, ‡University of Utah. This re-
search was facilitated in part by a National Physical Science Consortium
Fellowship and by stipend support from the National Security Agency.

[Copyright notice will appear here once ’preprint’ option is removed.]

the cost of run-time type checks. This cost can be reduced
via a type-recovery analysis (Shivers 1990), which attempts
to discover variable and expression types at compile time
and thereby justify the elimination of run-time type checks.

Since these languages are higher-order languages in
which the call graph is not static, the type-recovery anal-
ysis generally must be a form of control-flow analysis (Shiv-
ers 1988). A control-flow analysis (CFA) tracks the flow of
function values to call sites and builds the call graph even as
it tracks the flow of other values to their use sites.

To maximize the number of checks removed, the analysis
must take evaluation order into account. That is, it must be
flow sensitive (Banning 1979). In the following expression,
even a flow-insensitive control-flow analysis can determine
that x is a pair and thus car need not check that x is a pair.

(let ([x (cons e1 e2)]) (car x))

To make a similar determination in the following expres-
sions, however, evaluation order must be taken into account.

(let ([x (read)]) (begin (cdr x) (car x)))

(let ([x (read)]) (if (pair? x) (car x) #f))

A flow-insensitive analysis treats all references the same,
but a flow-sensitive analysis can determine that (car x)
is reached only after surviving the implicit pair check of
(cdr x) in the first expression and only when the explicit
pair check succeeds in the second expression. It can thus
eliminate the implicit pair check from car in both expres-
sions.1

In this paper, we present a flow-sensitive, CFA-based
type-recovery algorithm that runs in linear-log time. Because
we are interested in using the analysis to justify type recov-
ery in a fast production compiler (Dybvig 2010), we have
chosen to base the analysis on sub-0CFA (Ashley and Dyb-
vig 1998), a linear-time, flow-insensitive variant of 0CFA.
We use a novel combination of data structures and algo-
rithms to extend sub-0CFA with flow sensitivity at the cost
of only an additional logarithmic factor.

The algorithm has been incorporated into the commercial
Chez Scheme compiler, where it has proven to be effective,

1 Our use of the term flow sensitive agrees with the original definition of
Banning (1979), in which an analysis of two expressions take their order
of evaluation into account, as well as with a glossary definition (Mogensen
2000), in which separate analysis results are computed for distinct program
points. Our analysis might also be considered path sensitive, depending on
the definition of path sensitivity used.

v. 35 1 2011/4/9

justifying the elimination of about 60% of run-time type
checks in a large set of benchmarks. The algorithm has also
proven to be fast, processing over 75,000 lines of code per
second on average. Furthermore, since it runs in O(n log n)
time, it scales well.

The remainder of this paper reviews the semantics and
implementation of 0CFA and sub-0CFA (section 2), de-
scribes the traditional technique for implementing flow sen-
sitivity (section 3), describes our more efficient technique for
implementing flow sensitivity (section 4), discusses practical
considerations in a real-world implementation and presents
benchmark results (section 5), reviews related work (sec-
tion 6), and finally concludes (section 7).

2. Background
In this section, we review two relevant forms of control-flow
analysis, Shiver’s 0CFA and Ashley’s sub-0CFA. We also
discuss their implementations in terms of flow graphs, how
top and escaped values are handled, and our representation
of non-function types. Readers familiar with control-flow
analysis might wish to skip forward to section 3.

2.1 0CFA
Constraint rules for 0CFA on the call-by-value λ-calculus
are presented in figure 1. The operational semantics of this
language is standard and is omitted.

The analysis stores a reachability flag, JeKin, for each
expression e. The flag is> if the expression is reachable and
⊥ otherwise, and w is the standard partial order over Bool
where > w ⊥.

In addition, for each subexpression e, there is a flow
variable JeKout storing the abstract value that the expression
returns, i.e., a subset of the lambda terms that may flow there.
For example, the LAMBDA rule says that if λx.e is reachable,
then the result of that expression includes an abstract value
representing the lambda.

The CALLmid and CALLfun rules use K(e) which returns
the source context2 of e. For example, the CALLfun rule says
that if a lambda flows to a subexpression that is contextually
located inside an application (i.e., K(e1) = (e0 �)), and
a value flows to the operand e1 of the expression, then the
body of the invoked lambda is reachable and the actual
argument flows to the formal parameter.

To find a solution to these constraints, the analysis ini-
tially assigns ⊥ to each JeKin and the empty set to each
JeKout. Then it iteratively uses the constraint rules to update
JeKin and JeKout until they converge to a solution. In the pro-
cess JeKin and JeKout monotonically climb the Bool and V̂al
lattices respectively (Nielson et al. 1999).

2 As the above analysis is extended and optimized throughout the rest of
this paper we will need an explicit representation of context to reason about.
Hence for presentational purposes the contexts of expressions in the above
0CFA differ from more traditional presentations (Nielson et al. 1999).

Expressions: e ∈ Exp = x | λx.e | e e
Contexts: K(e) = � | (� e1) | (e0 �) | (λx.�)

Signatures: JeKin ∈ Bool {- Whether e is reachable -}

JeKout ∈ dVal {- What e evaluates to -}

r̂ ∈ Bool = {⊥,>} v̂ ∈ dVal = ℘(L̂am)

L̂am = {λx1.e1, λx2.e2, λx3.e3, . . .}

Jλx.eKin w >
Jλx.eKout ⊇ {λx.e}

LAMBDA
Je0 e1Kin w r̂
Je0Kin w r̂

CALLin

Je0Kout ⊇ {v̂0} K(e0) = (� e1)

Je1Kin w >
CALLmid

Je0Kout ⊇ {λx.eλ}
Je1Kout ⊇ {v̂1} K(e1) = (e0 �)

JeKin w > JxKout ⊇ {v̂1}
CALLfun

Je0Kout ⊇ {λx.eλ}
Je1Kout ⊇ {v̂1} JeλKout ⊇ {v̂}

Je0 e1Kout ⊇ {v̂}
CALLout

Figure 1: 0CFA (with reachability)

r̂

��_ _�� ��_ _e

����
v̂

(a) A general flow graph node

��_ _�
�

�
�

_ _e1BC
GFT?

��

@A
EDF?

��_ _�
�

�
�_ _e2@A
=< ����

_ _�
�

�
�_ _e3BC

?>����
t

����

_ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _

(b) A composite flow graph

Figure 2: Flow graphs in 0CFA

2.2 Flow-graph implementation of CFA
In order to solve the constraint rules for CFA efficiently, it
is common to represent the problem as a flow graph (Ja-
gannathan and Weeks 1995; Heintze and McAllester 1997a)
with nodes denoting the flow variables for an expression and
directed edges denoting the flow of abstract values from one

v. 35 2 2011/4/9

node to another. In the present case of 0CFA with reachabil-
ity, an edge into an expression node models reachability r̂,
whereas an edge out of an expression node models (possible)
result values v̂ as depicted in figure 2a.

For example, in an analysis for a language with condition-
als the flow graph for the expression (if e1 e2 e3) will
contain nodes representing both the reachability, JeKin, and
the result value, JeKout, of the if, e1, e2, and e3 expressions.
This is depicted schematically in figure 2b. The expressions
e1, e2, and e3 are drawn in outline to indicate that they may
contain other nodes internal to those expressions. The ex-
pression e1 is reachable if the if is reachable so there is
an edge from the input of the if to e1. Likewise e2 and e3
are reachable if e1 outputs a true or false value respectively.
Thus there are edges from e1 to e2 and e3 filtered by T? and
F? to test if the output value contains true or false values
respectively. Finally, the output node of the if computes the
lattice join (t) of the output nodes of e2 and e3.

Once the graph is constructed it is iterated until conver-
gence using a standard work-list algorithm. Nodes listed on
the work list have out-of-date outputs that need to be updated
based on new inputs to the node. Initially all nodes are on the
work list. A node is removed from the work list and new val-
ues for its output edges calculated based on the value of its
input edges. If the value on the outgoing edge changes, the
destination nodes of those edges are placed on the work list
effectively marking them as out-of-date. The algorithm con-
tinues selecting nodes form the work list and recalculating
out-of-date nodes until the graph converges and no out-of-
date nodes remain.

A crucial property of flow graphs is that, under certain
conditions, they quickly converge to a solution. Specifically,
if (1) the values that flow through a graph are members of
a finite-height lattice, L, (2) for each edge, the value on
that edge moves only monotonically up the lattice, and (3)
the output values of a node can be computed in constant
time from the input values, then the lattice will converge in
O(|L|(|E|+|N |)) time where |L|, |E| and |N | are the height
of L, the number of edges, and the number of nodes in the
graph, respectively.

For CFA, a minor modification has to be made to the
usual flow-graph algorithm. The initial graph contains no
links between call sites and functions, so the algorithm adds
new edges to the flow graph as it discovers connections be-
tween functions and call sites. This does not affect con-
vergence, however, since the maximum number of edges
is bounded, and edges are only added, never removed. In
the worst case, the algorithm adds an edge between each of
O(n) call sites and each of O(n) functions in a program of
size n, resulting in a graph with O(n2) edges.

0CFA uses a lattice over ℘(L̂am), which has a height
equal to the number of functions in the program. We thus
have a lattice of height O(n) and a graph of size O(n2), so
a naively implemented 0CFA takes O(n3) time to compute.

>

λx1.e1

iiiiiiiiii

UUUUUUUUUUλx2.e2

ssss

KKKK λx3.e3 . . .

DDDD

zzzz λxn.en

RRRRRRR

lllllll

⊥

Figure 3: CFA lattice of functions

Slightly faster techniques are known for computing 0CFA
but they still takeO(n3/ log n) time (Melski and Reps 2000;
Chaudhuri 2008; Midtgaard and Van Horn 2009).

2.3 Top and escaped functions in CFA
If a control-flow analysis is operating on a program that con-
tains free variables, e.g., variables imported from libraries
outside the scope of the analysis, then the analysis does not
know anything about the values of those variables. This is
handled by adding a top element to the lattice denoting an
unknown function (Shivers 1988) and using it for the value
of free variables. This top element represents not only any
function from outside the scope of the analysis but also any
function inside the scope of the analysis. Thus top subsumes
all other functions in L̂am .

Likewise, if a function is assigned to a free variable or
exported to some library outside the scope of the analysis,
then the function may be called in locations unknown to
the analysis. The fact that the analysis has lost track of all
places where the function flows is represented by marking
the function as escaped.

Top values and escaped functions can cause more top
values or escaped functions. First, if the function position of
an application is top, then the return value of the application
is top, and the arguments escape, since they are passed to
an unknown function. Second, if a function escapes, then its
formal parameters become top, and its return value escapes,
since it might flow to places outside the scope of the analysis.
Finally, when a set of functions are joined with a top value,
the result is top, and since a top value does not explicitly
mention the functions combined into it, those functions are
marked as escaped.

This handling of top and escaped functions is standard
and is assumed throughout the rest of this paper even when
not explicitly mentioned.

2.4 Sub-0CFA
0CFA takes O(n3) time even without flow sensitivity but
we are aiming for flow sensitivity in O(n log n) time. So
rather than basing our type-recovery analysis on the more
common 0CFA, we base it on sub-0CFA which takes only
O(n) time. Sub-0CFA bounds both the size of the graph and
the height of the lattice by approximating all non-singleton
sets of functions with the top element of the lattice. This
conservative approximation of 0CFA’s power-set lattice has

v. 35 3 2011/4/9

a constant height and is shown in figure 3. As a result, the
values that flow to the function position of a particular call
site either contain at most one function or are approximated
by the top value and thus add at most a linear number of
edges to the graph.

This approach lets more functions escape than in 0CFA,
but this is not as bad as it might at first seem. A function
flowing to two different places does not cause it to escape.
Rather, functions escape only when two or more flow to
the same point, i.e., when a call site performs some sort of
dispatch. For example, when running the analysis over the
following both f and g escape, since they both flow into fg,
while h is not affected.

(let ([f (lambda (x) e1)]
[g (lambda (y) e2)]
[h (lambda (z) e3)])

(let ([fg (if (read) f g)])
(f (g (fg (h (h e4)))))))

In the general case Ashley and Dybvig (1998) define sub-
0CFA by a projection (widening) operator. When this opera-
tor restricts sets of values to either singleton or top values the
lattice is effectively constant height. Other projection opera-
tors produce lattices that can be of constant or even logarith-
mic height and result in linear or nearly linear analyses. For
example, instead of sets of at most one function, the operator
may limit sets to at most k functions for some constant k.

2.5 Non-function types
Programming languages usually have more values than just
functions. To handle this we add a fixed set of primitive
types, e.g., INT , PAIR, etc., to the V̂al lattice. However,
because of the lattice flattening in sub-0CFA we split ab-
stract values into a function part and a non-function part.
The function part operates over the same flattened lattice as
sub-0CFA, but since we have a fixed number of non-function
types we allow the non-function part to operate over the full
power-set lattice. Nevertheless, we notationally treat abstract
values as sets. For example, {INT ,PAIR, λx.e} is under-
stood to mean 〈{INT ,PAIR}, {λx.e}〉.

3. Traditional flow-sensitivity
The control-flow analyses described in section 2 are flow
insensitive. This means that all references to a variable are
treated as having the same value as the binding site of the
variable. Consider the following examples from the intro-
duction.

(let ([x (cons e1 e2)]) (car x))

(let ([x (read)]) (if (pair? x) (car x) #f))

(let ([x (read)]) (begin (cdr x) (car x)))

With a flow-insensitive analysis, all references to x in the
first expression are known to be pairs while, in the second
and third, they are all treated as >.

Type information can be gained, however, from the ex-
plicit and implicit dynamic type checks in the second and
third expressions. In the second expression, we can deduce
from the explicit pair check, (pair? x), that x must be a
pair at the point where car is called. In the third expression,
we can also deduce that x must be a pair at the point where
car is called, since an implicit pair check guarantees that
cdr returns only if its argument is a pair.

We call information constructive when it is learned from
operations that construct a value as in the first expression.
We call information observational when it is learned from
operations that observe a value as in the second and third
expressions.

Observational information is restrictive, since it restricts
that type of variable or value, as in the restriction of x to the
pair type in the those expressions. Observational information
can restrict a type to two or more disjoint types, in which
case the type is ⊥. In general, wherever a ⊥ type occurs, the
sequentially following code is unreachable (dead) and can
be discarded.

To collect observational information, we must use a flow-
sensitive analysis as the type information about a variable is
different at different points in the program, e.g., before and
after an observer.

We present such an analysis in two stages. First, we
present an analysis that is flow sensitive and gathers observa-
tional information only from functions like car that uncon-
ditionally restrict the type of their argument. Our approach to
this form of flow sensitivity is standard. Then we generalize
this and present an analysis that also gathers observational
information from functions that restrict the type of their ar-
gument conditionally. For example, the argument of pair?
is limited to pairs if and only if pair? returns true. Our ap-
proach to this form of flow sensitivity is novel.

3.1 Flow-sensitivity for unconditional observers
To recover observational information from functions like
car, an analysis must be flow sensitive. A flow-insensitive
analysis takes information about a variable’s abstract value
directly from its binding site to each reference as the in-
formation about a variable is the same at all references to
the variable. To be flow-sensitive we trace the flow of the
program and adjust the abstract value for in-scope vari-
ables along the way. Consider the earlier example that used
(cdr x) and (car x). With flow-sensitivity, the variable
x starts at its binding site with the abstract value >. It then
flows to (cdr x). On entry to (cdr x), x still has the ab-
stract value >. Since cdr throws an error and does not re-
turn unless its argument is a pair, the analysis learns that x
is a pair on exit from (cdr x). This then flows to (car x).
Thus (car x) is only ever called with a pair argument. The

v. 35 4 2011/4/9

Expressions: e ∈ Exp = x | λx.e | e e | if e e e | e; e | c
Contexts: K(e) = � | (� e1) | (e0 �) | (λx.�) | (�; e1) | (e0; �) | (if � e1 e2) | (if e0 � e2) | (if e0 e1 �)

Signatures: JeKin ∈ Bool × dEnv JeKout ∈ dVal × dEnv × dEnv E(λx.e) ∈ dEnv r̂ ∈ Bool = {⊥,>}

ρ̂ ∈ dEnv = Var → dVal v̂ ∈ dVal = dFun × ℘(dTag) f̂ ∈ dFun = ℘(L̂am + P̂rim)

t̂ ∈ dTag = {FALSE ,TRUE , INT ,FLOAT ,PAIR, . . .}

L̂am = {λx1.e1, λx2.e2, λx3.e3, . . .} o ∈ P̂rim = {pair?, car, cdr, . . .}

JcKin w 〈>, ρ̂〉
JcKout w 〈ABS(c), ρ̂, ρ̂〉

CONST
Jλx.eKin w 〈>, ρ̂〉

Jλx.eKout w 〈λx.e, ρ̂, ρ̂〉 E(λx.e) w ρ̂
LAMBDA

JxKin w 〈>, ρ̂〉 v̂t = ρ̂(x) u >t v̂f = ρ̂(x) u >f
JxKout w 〈v̂t t v̂f , ρ̂[x 7→ v̂t], ρ̂[x 7→ v̂f]〉

VAR

Je0 e1Kin w 〈r̂, ρ̂〉
Je0Kin w 〈r̂, ρ̂〉

CALLin

Je0Kout w 〈v̂0, ρ̂t, ρ̂f 〉 K(e0) = (� e1)

Je1Kin w 〈>, ρ̂t t ρ̂f 〉
CALLmid

Je0Kout w 〈{λx.eλ}, ρ̂
e0
t , ρ̂

e0
f 〉 Je1Kout w 〈v̂1, ρ̂

e1
t , ρ̂

e1
f 〉 K(e1) = (e0 �)

JeλKin w 〈>, E(λx.eλ)〉
CALLfun

Je0Kout w 〈{f̂}, ρ̂
e0
t , ρ̂

e0
f 〉 Je1Kout w 〈v̂1, ρ̂

e1
t , ρ̂

e1
f 〉 〈v̂, v̂t, v̂f 〉 = RET (f̂) ∀i ∈ {t, f}.ρ̂′i = ARG(ρ̂e1t t ρ̂

e1
f , e1, v̂1 u v̂i)

Je0 e1Kout w 〈v̂, ρ̂
′
t, ρ̂
′
f 〉

CALLout

Je0; e1Kin w 〈r̂, ρ̂〉
Je0Kin w 〈r̂, ρ̂〉

SEQin

Je0Kout w 〈v̂0, ρ̂t, ρ̂f 〉 K(e0) = (�; e1)

Je1Kin w 〈>, ρ̂t t ρ̂f 〉
SEQmid

Je0; e1Kout w Je1Kout
SEQout

Jif e0 e1 e2Kin w 〈r̂, ρ̂〉
Je0Kin w 〈r̂, ρ̂〉

IFin

Je0Kout w 〈v̂0, ρ̂t, ρ̂f 〉 K(e0) = (if � e1 e2)

Je1Kin w 〈>, ρ̂t〉 Je2Kin w 〈>, ρ̂f 〉
IFmid

Jif e0 e1 e2Kout w Je1Kout t Je2Kout
IFout

ARG(ρ̂, e, v̂) =

8<:⊥ if v̂ = ⊥
ρ̂ if v̂ 6= ⊥ ∧ e /∈ Var
ρ̂[e 7→ ρ̂(e) u v̂] if e ∈ Var

ABS(vs) = {ABS(v) | v ∈ vs}
ABS(#f) = FALSE

ABS(n) = INT

. . .

>t = dVal\{FALSE}
>f = {FALSE}

RET (f̂) =

8>>>>><>>>>>:

〈>, >, >〉 if f̂ = >
〈⊥, ⊥, ⊥〉 if f̂ = ⊥
〈v̂, ρ̂t(x), ρ̂f (x)〉 if f̂ = λx.e where 〈v̂, ρ̂t, ρ̂f 〉 = JeKout
〈>, {PAIR}, {PAIR}〉 if f̂ = car
〈{FALSE, TRUE}, {PAIR}, >\{PAIR}〉 if f̂ = pair?

. . .

Figure 4: Analysis constraint rules

v. 35 5 2011/4/9

earlier cdr prevents non-pair values from flowing to the car,
so we can safely omit the implicit pair check in the car.

To gather restrictive information, each function is anno-
tated with the abstract value each argument must be for the
function to return. For example, if car returns, then its ar-
gument must be a pair. This is not limited to built-in prim-
itives. For user-defined functions we examine the abstract
value of each formal parameter after flowing through the
function body. In the following example, if g returns, then
we know its argument, y, is a pair. Thus x must be a pair af-
ter returning from (g x) and consequently the implicit pair
check in cdr is redundant and can be safely omitted.

(let ([x (read)]
[g (lambda (y) (+ (car y) 1))])

(g x)
(cdr x))

The formal semantics for an analysis with flow sensitivity
for unconditional observers is a straightforward extension of
the analysis in figure 1 for 0CFA. It includes sequencing by
threading the environment through the evaluation flow of the
program. Each expression still has an associated reachability
flag and result value, but now each expression also has two
environments associated with it. One tracks the types of vari-
ables when entering the expression. The other tracks the type
of variables when exiting the expression. At each function
call, arguments are restricted to only those abstract values
that are compatible with the particular function returning.
For example, after (car x), x is restricted to pairs. Both
the entering and exiting environments are treated as reduced
abstract domains (Cousot and Cousot 1979) thus equating
abstract elements with the same meaning (concretization).
Hence if any component of an environment is ⊥ then all
components of the environment are forced to ⊥. For exam-
ple, if x is known to be an integer, then after (car x), x
is ⊥. This causes all components of the exiting environment
to be ⊥. In addition as part of the reduced abstract domain
the return value of (car x) is ⊥. This models the fact that
(car x) does not return if x is an integer.

This simple form of flow sensitivity handles functions
like car that unconditionally provide observational infor-
mation about their arguments when they return. However,
it fails to handle predicates such as pair?. This is because
the fact that pair? returns says nothing by itself about the
abstract value of its argument. Rather, the type information
is conditional. Whether it returns a true or false value tells
us whether its argument is a pair.

3.2 Flow-sensitivity for conditional observers
In order to handle conditional or predicated observers we
generalize the environments flowing through the program.
On exit from an expression we record one environment for
when it returns a true value and another for when it returns
a false value. The environment recorded for entry to the
expression remains the same as before.

Figure 4 presents this formally. It includes two environ-
ments in JeKout. One contains abstract value information for
when e returns true values and the other when e returns false
values. For example, J(pair? x)Kout has x as a pair in the
true environment and as a non-pair in the false environment.
These true and false environments are used by if. The true
environment of the test flows to the entering environment of
the true branch. The false environment of the test flows to
the entering environment of the false branch.

In the semantics of figure 4, gathering restrictive infor-
mation from a function call, e.g., (car x) or (pair? x),
is implemented by the CALLout rule. First, the values and en-
vironments that flow out of e1 and e2 are collected. Next,
RET examines any functions, f̂ , flowing out of e0 and re-
turns three abstract values. One value is the return value of
f̂ . The other two are the values that the argument to f̂ must
be for f̂ to return either true or false respectively. Finally,
ARG uses this information to determine for both the true
and false cases if the function could return to this call site
given the abstract value of the call site’s argument. For exam-
ple, (car 3) does not return. If the argument is a variable,
ARG restricts the variable in the environment to the appro-
priate abstract value. Thus after (pair? x), x is restricted
to pairs and non-pairs in the true and false cases respectively.

Each primitive or function is annotated with one abstract
value for when the primitive or function returns true and an-
other for when it returns false. For example, pair? is anno-
tated with the abstract value for pairs for the true case and
the abstract value for non-pairs for the false case. Uncon-
ditional observers like car are annotated with the same ab-
stract value in both the true and false cases. For user-defined
functions, the same information is obtained from the exiting
true and false environments of the body of the function.

3.3 Flow-graph representation of flow-sensitivity
As with standard flow-sensitive CFA these constraint rules
can be implemented in terms of a flow graph. Yet, while in-
formation can flow directly from variable bindings to vari-
able references in a flow-insensitive CFA, this is not suffi-
cient in a flow-sensitive CFA. Instead, the abstract value for
a variable must be threaded through each expression. In ad-
dition to the usual reachability flags and result abstract val-
ues, we associate an environment with each entry edge of
an expression and two environments (true and false) with
each exit edge of an expression as depicted in figure 5a. The
single-arrowhead lines represent the flow of single values
and the double-arrowhead lines represent the flow of envi-
ronments. Figure 5b shows how to extend the composite flow
graph for if from figure 2b to account for the extra edges
and illustrates the flow of the true and false environments.

This graph formulation still has only linearly many edges,
but some of these edges now flow environments. The lattice
of an environment is the Cartesian product of the lattice for
each variable, so the lattice height of an environment is linear

v. 35 6 2011/4/9

r̂

��

ρ̂in

����

e

�� ���� ����
v̂ ρ̂t ρ̂f

_ _ _ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _ _ _

(a) A flow-sensitive node

�� ����_ _�
�

�
�_ _e1*+

ON T?

��""

PQ
=<F?

��

BC
?>����

89
ML����_ _�

�
�
�

_ _e2

��

@A
=< ����

89
=< ����

_ _�
�

�
�

_ _e3*+
?>
��

BC
?>���� ����

t@A
-,

��

t

����

tBC
/.
������

_ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _

(b) A composite flow graph

Figure 5: Flow graphs for flow-sensitive 0CFA

in the number of variables. Thus, the flow graph has a linear
number of edges with linear height lattices and consequently
takes quadratic time to converge in the worst case.

4. Efficient flow-sensitivity
The flow-graph based algorithm for flow-sensitive CFA de-
scribed in section 3 is quadratic because the environments
are threaded through each expression. Contrast this with
flow-insensitive sub-0CFA where the abstract value of a vari-
able flows directly from its binding location to each refer-
ence without threading through intervening expressions. To
efficiently implement flow sensitivity, we adopt a similar ap-
proach. However, instead of flowing abstract values from a
variable binding site to each reference, we flow the informa-
tion directly from one occurrence of the variable to the next,
following the control flow of the program. The abstract value
of a variable is adjusted at each occurrence as appropriate.

To see how this works, first consider what the flow-
sensitive analysis from section 3 does in the following exam-
ples. Consider, for example, how abstract values for x flow
from (pair? x) to (car x) in the following expression.
Assume x is not referenced in e1 or e2. Such expressions can
arise via the expansion of boolean connectives such as and,
or, and not.

(if (if (pair? x) e1 e2) (car x) ...)

What the flow-sensitive analysis learns about x at (car x)
depends on the return values of e1 and e2. If e1 evaluates
to only true values and e2 evaluates to only false values,
then x at (car x) is always a pair. On the other hand, if e1
evaluates to only false values and e2 evaluates to only true
values, then x at (car x) is never a pair. Other cases arise
if either expression diverges or returns both true and false
values.

Likewise, consider the following expression where re-
strictive information is learned from (car x) in one of the

branches of the inner if. As before, assume x is not refer-
enced in e0, e1, or e2.

(let ([x (read)])
(if (if e0 (begin (car x) e1) e2)
(cdr x)
...))

After (car x), x is known to be a pair, but the abstract
value of x at (cdr x) depends upon the return values of e1
and e2. If e2 returns a true value then (cdr x) is reachable
without passing through the (car x). If e2 evaluates to only
false values, however, then all paths to (cdr x) go through
(car x), and x at (cdr x) must be a pair. Interestingly,
the return value of e0 is not needed to determine this, since
if e2 always evaluates to a false value, then (cdr x) is
reachable only when e0 is a true value and sends control
through (car x)

The remainder of this section derives an optimized algo-
rithm that takes all such cases into account and produces
the same results as the traditional algorithm, but requires
only linear-log time. Section 4.1 starts by defining theo-
rems about how to move abstract values from one place to
another. Then section 4.2 gives an algorithm to determine
where to copy abstract value information. Section 4.3 de-
fines a variable-independent auxiliary cache so the transfor-
mations defined in section 4.1 can be computed efficiently.
Finally, section 4.4 puts all of these together into a linear-log
time algorithm that computes results identical to those of the
traditional algorithm.

4.1 Context skipping
In the earlier example with pair?, the traditional algorithm
first flows the abstract value of x from the exiting environ-
ments of (pair? x) into the entering environments of e1
and e2, then through e1 and e2, and finally from the exiting
environments of e1 and e2 through both if expressions and
into (cdr x). When flowing through e1 and e2, the abstract
value of x is threaded through every subexpression of e1 and
e2. However, it turns out that if x is not referenced in e1 and
e2, then these expressions can be skipped. Intuitively, the
true and false environments that contain x might be swapped
or joined, but the value of x in each environment does not
fundamentally change. The following lemma reflects this in-
tuition.

Lemma 4.1 (Expression Skipping). If x is a variable not
mentioned in e then

〈ρ̂t(x), ρ̂f (x)〉 = 〈T ?(e, ρ̂in(x)), F?(e, ρ̂in(x))〉
where 〈r̂, ρ̂in〉 = JeKin

and T ?(e, u) and F?(e, u) are as defined in figure 6.

Proof. By induction on e and constraint rules in figure 4.

This lemma allows us to directly compute the abstract values
of x at the end of e1 and e2 given the abstract values at the

v. 35 7 2011/4/9

T ?(e, u) = (v̂ u >t) 6= ⊥ ? u : ⊥ where 〈v̂, ρ̂t, ρ̂f 〉 = JeKout

F?(e, u) = (v̂ u >f) 6= ⊥ ? u : ⊥ where 〈v̂, ρ̂t, ρ̂f 〉 = JeKout

Figure 6: True and false expression guards

VC,e〈v̂t, v̂f , v̂in〉 = 〈T ?(C[e], v̂′t), F?(C[e], v̂′f), v̂
′
in〉

where 〈v̂′t, v̂′f , v̂′in〉 = V ′C〈v̂t, v̂f , v̂in〉

V ′(if � e2 e3)〈v̂t, v̂f , v̂in〉 = 〈v̂′t, v̂′f , v̂in〉
where v̂′t = T ?(e2, v̂t) t T ?(e3, v̂f)

v̂′f = F?(e2, v̂t) t F?(e3, v̂f)

V ′(if e1 � e3)〈v̂t, v̂f , v̂in〉 = 〈v̂′t, v̂′f , v̂in〉
where v̂′t = v̂t t T ?(e3, v̂in)

v̂′f = v̂f t F?(e3, v̂in)

V ′(if e1 e2 �)〈v̂t, v̂f , v̂in〉 = 〈v̂′t, v̂′f , v̂in〉
where v̂′t = v̂t t T ?(e2, v̂in)

v̂′f = v̂f t F?(e3, v̂in)

V ′(λx.�)〈v̂t, v̂f , v̂in〉 = 〈v̂in, v̂in, v̂in〉
V ′(e2 �)〈v̂t, v̂f , v̂in〉 = 〈v̂t t v̂f , v̂t t v̂f , v̂in〉
V ′(� e2)〈v̂t, v̂f , v̂in〉 = 〈v̂t t v̂f , v̂t t v̂f , v̂in〉
V ′(�;e2)〈v̂t, v̂f , v̂in〉 = 〈v̂t t v̂f , v̂t t v̂f , v̂in〉
V ′(e1;�)〈v̂t, v̂f , v̂in〉 = 〈v̂t, v̂f , v̂in〉

Figure 7: Context skipping function

start of e1 and e2. However, it deals only with the flow of
abstract values from the entry of an expression to its exit. As
seen in the examples we are more interested in how abstract
value information flows from an expression to its surround-
ing context. In the preceding examples abstract value infor-
mation flows from the outputs of (pair? x) and (car x)
to the output of the surrounding (if (pair? x) e1 e2)
and (if e0 (begin (car x) e1) e2) respectively. To
account for this we compute the flow across a context by
means of the context-skipping function VC,e in figure 7.
Given an expression, e, in a single-layer context, C, it com-
putes the abstract value of a variable in the exit environments
of C[e] given the abstract value in the exit environments of
e and the entry environment of C[e]. The following lemma
states this formally. Here again the intuition is that the true
and false information about a variable might join or swap
but do not fundamentally change.

Lemma 4.2 (Single-Layer Context Skipping). If x is a vari-
able not mentioned in the single-layer context C then

〈ρ̂c
t(x), ρ̂

c
f (x), ρ̂in(x)〉 = VC,e〈ρ̂e

t (x), ρ̂
e
f (x), ρ̂in(x)〉

where 〈v̂e, ρ̂
e
t , ρ̂

e
f 〉 = JeKout

〈v̂c, ρ̂
c
t , ρ̂

c
f 〉 = JC[e]Kout 〈r̂, ρ̂in〉 = JC[e]Kin .

Proof. By lemma 4.1, constraint rules and unfolding.

In addition to this context-skipping function and lemma for
values exiting a context, there are a corresponding context-
skipping function and lemma for values entering a context.
They are omitted here as they are straightforward and are
equivalent to a simple reachability check.

Lemma 4.2 only handles single layer contexts. For com-
posite, multilayer contexts, the following lemma applies.
(This is also the reason why the tuple returned by VC,e has a
third component even though it is unused in lemma 4.2.)

Theorem 4.3 (Multilayer Context Skipping). If x is a vari-
able not mentioned in a single-layer or multilayer context
C then the equation from lemma 4.2 holds where VC,e on a
composite context is

VC2C1,e = VC2,C1[e] ◦ VC1,e

Proof. By induction on C and lemma 4.2.

Critically, even under composition the universe of possible
VC,e is small and finite. Any particular VC,e can be repre-
sented in a constant-size, canonical form as stated in the fol-
lowing theorem.

Theorem 4.4 (Canonical Skipping Functions).
For any particular C, e, JeKout and JC[e]Kout,

VC,e〈v̂t, v̂f , v̂in〉 = 〈
⊔
T ,

⊔
F , v̂in〉

for some T, F ⊆ {v̂t, v̂f , v̂in}.

Proof. By induction on C and unfolding VC,e.

Intuitively there are only so many ways to join and swap
the true and false values of a variable. Diagrammatically
these canonical forms are all sub-graphs of the graph in
figure 8 that omit zero or more edges leading to the three
abstract join (t) nodes. Functions of this form have compact,
constant-size representations, are closed under composition,
and form a finite height lattice that they monotonically climb
when JeKout and JC[e]Kout climb the abstract value lattice.

When composing VC,e we always reduce the composition
to this canonical form as a matter of course. Thus all VC,e

can be applied to a given value in constant time even if
the VC,e is from the composition of many VC,e. We take
advantage of this to flow abstract values across multilayer
contexts quickly. Since VC,e is the same for all variables not
in C, we can compute VC,e once and use it for all variables

v. 35 8 2011/4/9

v̂t v̂f v̂in

t t

v̂′t v̂′f v̂′in

Figure 8: Graph form of canonical skipping functions

if1

if2

iiiiiiiiiii
if3

QQQQQQQ

if4 if5

if6

nnnnnn
if7

PPPPPP
if8

���
if9

===

if10 if11 x12 x13

if14

{{{
if15

CCC

if16

{{{
if17

CCC

x18 x19 x20 x21

Figure 9: Example AST for skipping context selection

not in C. Section 4.3 shows how to efficiently compute
and update these compositions when JeKout and JC[e]Kout

change.
This skipping function is the key insight of our technique.

We still have to choose which contexts to skip and how to
efficiently compute VC,e, but those aspects of the algorithm
are only so that we can use skipping functions to more
efficiently flow information through the program.

4.2 Selecting context skips
We now have two ways to flow abstract values through a pro-
gram. The first is the constraint rules in figure 4. The second
is the skipping function, VC,e. For each variable, we use a
combination of these methods that ensures the analysis takes
only linear-log time while maintaining semantic equivalence
with the traditional algorithm.

We do this by selecting the longest skips for which theo-
rem 4.3 holds for a given variable and fall back to the con-
straint rules in figure 4 when it does not. A different set of
skips is selected for each variable. We select longest skips
for a particular variable, x, by starting with each reference
to it, e, and finding the largest context, C, of e that does not
contain x. C is then one of the contexts that we skip.

Since C is the largest context of e not containing x, the
parent ofC[e], p, contains references to x other than the ones
in e. Thus we cannot use theorem 4.3 to skip past p, and at p
we fall back to the constraint rules from figure 4. We repeat
the process by finding the largest context of p that does not
contain x and choose that context as a skip. This repeats until
we have all the skips needed to flow x through the entire
program.

As an example consider the abstract-syntax tree in fig-
ure 9 and selecting skips for x. The dotted edges in the di-
agram represent multiple layers of the abstract-syntax tree
that are omitted and which do not contain references to x.

To select the skips, initially all references to x are exam-
ined. In this case that is expressions 12, 13, 18, 19, 20 and
21. For each such expression, the largest context not con-
taining x is selected. For expression 12, this is the context
going from expression 12 to just past expression 8. For ex-
pression 13, this is the context going just past expression 9,
and so on. The parents of these contexts are places where
the constraint rules are used instead of the context skipping
function. For example, for moving type information about
x from expression 8 to its parent, expression 5, theorem 4.3
does not hold and the context skipping function cannot be
used because of the reference to x in expression 9, the other
child of expression 5.

The process repeats with the parents of each of the skips.
For example, expression 5 is the parent of the contexts end-
ing at expression 8 and expression 9 so the algorithm selects
largest context of expression 5 that does not contain x. Like-
wise for expressions 10 and 11.

In the end the only places where the algorithm falls back
to using the constraint rules are expressions 1, 4, 5, 10, and
11. Everywhere else uses context skipping functions. The
entire scope of x is tessellated by the skipping contexts and
the points where we fall back to the constraint rules.

This part of the algorithm is linear because the selected
skips form an implicit tree structure. The expressions at
which we use the constraint rules are the nodes of the tree.
The contexts being skipped are the edges of the tree. The ref-
erences to the variable are the leaves. Since the numbers of
edges and nodes in a tree are linearly bounded by the num-
ber of leaves, the number of skips and the number of uses
of the constraint rules for a particular variable are both lin-
early bounded by the number of references to that variable.
Summing over all variables we are linear in the size of the
program.

Finding the largest context not containing a particular
variable is the most computationally complex part of this
process. It is implemented in terms of a lowest common
ancestor algorithm (Aho et al. 1973; Alstrup et al. 2004)
that takes linear time for preprocessing and constant time
for each query. Finding the largest skips amounts to finding
the lowest common ancestor of an expression and the imme-

v. 35 9 2011/4/9

if0

if1

ifn−1

ifn

ifn+1

if2n−1

(car xn) e2n

(car x2) en+2

(car x1) en+1

(car xn) en

(car x2) e2

(car x1) e1
...

...

...

VCn···C1,en+1

VCn+1···C2,e2

VC2n−1···Cn,e1

...

Figure 10: Example of quadratic VC,e calculation

diately preceding and following references to the variable
being considered.

4.3 Caching context skips
Theorem 4.3 allows us to skip over a context and move
abstract value information quickly across multiple layers.
Once the VC,e is computed and reduced to the canonical
form by theorem 4.4, it takes only constant time to move
abstract value information across C for any variable not
referenced in C.

However, we must be careful that the total time to con-
struct the various VC,e does not exceed our linear-log time
bound. For example, consider the abstract-syntax tree in fig-
ure 10 where a different VC,e is needed for each of the n
variables and each context is n layers deep. Computing the
VC,e for each variable separately would take O(n2) time.

To ensure a linear-log time bound we keep a cache of VC,e

for selected C such that

− only linear-log many VC,e are stored in the cache,

− for any C, a VC,e can be computed from the composition
of only logarithmically many VC,e from the cache, and

− when more abstract value information is learned about an
expression, only logarithmically many VC,e in the cache
need to be updated and each VC,e takes only constant
time to update.

The cache can be thought of as starting with the single-
layer VC,e. That is, it stores the skipping information neces-
sary to flow any variable by a single step from the exit envi-
ronment of one expression to the enclosing expression’s exit
environment. If the cache stores only these, then when the
abstract value of an expression changes, it takes only con-

if0

if1

if2

if3

if4

if5

if6

if7

et
8 ef

8

et
7 ef

7

et
6 ef

6

et
5 ef

5

et
4 ef

4

et
3 ef

3

et
2 ef

2

et
1 ef

1

VC1,e1

VC2,e2

VC3,e3

VC4,e4

VC5,e5

VC6,e6

VC7,e7

VC8,e8

VC1C2,e3

VC3C4,e5

VC5C6,e7

VC7C8,e9

VC1···C4,e5

VC5···C8,e9

VC1···C8,e9

...

Figure 11: Layered structure of the VC,e cache

stant time to update, but the VC,e for multilayer contexts re-
quire the composition of linearly many VC,e from the cache.

Next, the single-layer VC,e are paired together. Each sin-
gle layer C that goes from depth 2k to depth 2k+1 is paired
with each of its single-layer, child contexts which go from
depth 2k+1 to 2k+2. The VC,e for each of these pairings is
included in the cache. These double-layer VC,e are then also
paired together. Each double-layer C that goes from depth
4k to depth 4k + 2 is paired with each of its double-layer,
child contexts which go from depth 4k + 2 to 4k + 4. The
VC,e for each of these pairings is also included in the cache.
This process continues iteratively, pairing each 2i-layer con-
text that goes from depth 2i+1k to depth 2i+1k+2i with each
of its 2i-layer child contexts which go from depth 2i+1k+2i

to 2i+1k + 2i+1.
As an example of this, the cached values for one path

down a program tree are depicted in figure 11. The same
pairing of values occurs on all other paths down the program
tree. Each VC,e that is shared between different paths is
stored only once in the cache.

This selection of cached VC,e has the three important
properties that ensure our linear-logarithmic bound. First,
only linear-log many VC,e functions are cached, since only
logarithmically many VC,e are cached for any particular
e. Second, any VC,e that is not cached can be computed
from the composition of logarithmically many cached VC,e.
Third, when the VC,e for a single-layer context is updated,
the double-layer VC,e composed from it are also updated.

v. 35 10 2011/4/9

If the new double-layer VC,e changes as a result, then the
quadruple-layer VC,e composed from it are updated. Thus,
when abstract value information is learned about an expres-
sion, at most logarithmically many VC,e in the cache are up-
dated and since each multilayer VC,e in the cache is com-
posed of exactly two VC,e, each update takes constant time.

This caching strategy can be generalized by considering
the path from each expression to the root. Storing this path
as a perfectly balanced variation of a skip list (Pugh 1990) is
equivalent to the caching strategy just described. However
by using a variation of Myers applicative random access
stacks (Myers 1984), the number of cached values and the
total time spent updating the cache both become linear in the
size of the program. For an arbitraryC, computing VC,e may
still require logarithmically many cached values, so this does
not improve the overall asymptotic bounds, but it improves
the constants involved. This is the representation used by the
implementation described in section 5.

4.4 Algorithm summary
Putting all these pieces together the optimized algorithm
works as follows. First, as described in section 4.3, the
cache of skip functions, VC,e is constructed using flow-graph
nodes. This creates linearly many nodes in linear time. Next,
for each variable, context skips are selected as described in
section 4.2, and flow-graph nodes are constructed that take
logarithmically many VC,e from the cache and build a VC,e

for the skipped context. In total there are linearly many con-
text skips and each one involves composing logarithmically
many skipping functions. Each composition takes one flow-
graph node, so in total this process creates linear-log nodes
in linear-log time. Finally, for each non-skipping point where
a variable is referenced or the constraint rules are used for
a particular variable, a flow-graph node is constructed that
computes the type of the variable at that point in terms of the
non-skipping points that flow to the point and the VC,e that
skips from them to the current non-skipping point. A similar
process is used for flows entering rather than exiting a con-
text. Since in total there are linearly many skipping points,
this creates linearly many nodes in linear time. Overall this
entire process then takes linear-log time to construct the flow
graph and produces a flow graph with a linear-log number
of nodes. The values flowing over the edges of the graph
all monotonically increase over constant-height lattices, and
nodes recompute in terms of their inputs in constant time.
Thus, the flow-graph for the optimized analysis converges in
linear-log time.

5. Implementation
We have implemented the CFA algorithm described in sec-
tion 4 and incorporated it into the Chez Scheme (Dybvig
2010) compiler. It is used to perform type recovery and jus-
tify the elimination of run-time type checks. The implemen-
tation supports the full Scheme language and successfully

compiles and runs both Chez Scheme itself and the entire
Chez Scheme test suite without errors.

5.1 Implementation structure
To implement type recovery, a post-processing pass is added
after the CFA pass. The post-processing pass uses the type
information gathered during the CFA pass to determine
where run-time type checks are unnecessary. Primitive calls
where some or all of the run-time type checks are unneces-
sary are replaced by an “unsafe” variant of the call which
does not perform the unnecessary run-time type check. For
instance (car x) is replaced by (unsafe-car x) when x
is determined to be a pair. If a primitive makes multiple run-
time type checks and only some of those type checks can be
omitted, then a “semi-unsafe” variant is used. These cases
arise when a primitive does more than one run-time type
check or when the checks involve information not tracked
by the analysis. For example, a vector range check cannot
be eliminated because the analysis does not track the lengths
of individual vectors. Another example is when the analy-
sis determines that the vector argument of a vector-ref is
always a vector but not that the index argument is always a
nonnegative integer.

5.2 Implementation features
Our implementation handles a variety of language constructs
and features that are not described in section 4. Among these
are mutable variables and the unspecified order of evaluation
for function call arguments and let bindings.

A mutable variable’s type can change between the site
where type information is recovered and its next use. For in-
stance, an intervening function call could arbitrarily mutate
the variable and invalidate what is learned.3 Thus, for muta-
ble variables, our implementation gathers only constructive
information.

The unspecified order of evaluation for function-call ar-
guments and let bindings can be handled by choosing a
fixed evaluation order prior to this analysis. At present, how-
ever, the decision is made later in the compiler, during reg-
ister allocation. Instead, we process function-call arguments
independently, as we do for the branches of an if. While
the resulting environments are unioned for if, they are in-
tersected for function-call arguments. The bindings of a let
are handled similarly.

5.3 Effectiveness
We tested the effectiveness of the type-recovery algorithm
on a standard set of R6RS Benchmarks (Clinger 2008). Each
test is run first with type recovery enabled and then with type
recovery disabled. The number of type checks performed at
run-time are then compared. An average of 71.6% of type

3 This issue arises only in higher-order languages. The analysis can pro-
cess restrictive information for mutable variables in first-order languages,
including, for example, the output language of a closure-conversion pass in
a typical compiler for a higher-order language.

v. 35 11 2011/4/9

0%

20%

40%

60%

80%

100%

Flow-insensitive
sub-0CFA

Flow-insensitive
0CFA

Flow-sensitive
sub-0CFA

Flow-sensitive
0CFA

Figure 12: Percent of type checks removed

checks are eliminated from the code, which results in 59.1%
fewer type checks at run-time. We compared these results
with a flow-insensitive version of this analysis and both flow-
insensitive and flow-sensitive versions of 0CFA. On average,
flow-insensitive analysis peformed significantly worse, with
the sub-0CFA version eliminating 43.2% and the CFA ver-
sion eliminating 43.4% of type checks at run time. The flow-
sensitive 0CFA analysis peformed only slightly better, elim-
inating 59.2% of type checks at run time. Figure 12 com-
pares the percent of type checks eliminated, on average, for
the flow-insensitive sub-0CFA, flow-insensitive 0CFA, flow-
sensitive sub-0CFA, flow-sensitive 0CFA. Figure 14 and fig-
ure 15 at the end of this paper give the percent of checks
eliminated for each individual program.

Although the analysis does not require the order of eval-
uation of let bindings and function-call arguments to be
specified, type information learned in one argument or bind-
ing might be useful for eliminating a type check in another
argument or binding. In (f (car x) (cdr x)), for in-
stance, a specified evaluation order would allow the implicit
pair check to be eliminated from one of the two argument
expressions. To determine the impact of fixing the order of
operations, we tested with both left-to-right and right-to-left
evaluation orders, and found that in both cases, the aver-
age number of type checks at run time improved by only
a few percent, although the benefit is more significant in a
few cases.

These results are encouraging, and we expect to be able to
make additional improvements as we refine the implementa-
tion. The analysis currently treats all pairs and all vectors
the same, although we could treat each occurrence of cons
and make-vector in the source code as a separate element
in the lattice analogously to the way we handle lambda ex-
pressions, and thus get more information about the contents
of pairs and vectors.

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000

Ti
m

e

AST node count

Figure 13: Source node count versus analysis time

5.4 Efficiency
Beyond the effectiveness of our analysis, we also verified its
asymptotic behavior and measured its speed by counting the
number of source tree nodes on input to the type-recovery
pass and measuring the time it takes for the CFA algorithm to
run. For this test, we used the R6RS benchmarks, as before,
along with the various compilation units that comprise the
Chez Scheme compiler. Figure 13 plots these times on a
logarithmic scale along with linear (lower) and linear-log
(upper) reference lines. The quantization of the numbers at
the lower end of the graph results from timer granularity.
The graph shows that the processing times trend between
the linear and worst-case linear-log lines, as expected. The
type recovery is also acceptably fast, handling 100,000 AST
nodes (approximately 30,000 lines of code) in less than a
second for the largest of the programs. Averaging over all
of the programs, the implementation handles about 256,600
AST nodes (approximately 75,000 lines of code) per second.

6. Related work
6.1 CFA and CFA-based type recovery
Shivers (1990) uses an extension of 0CFA to perform type
recovery. Instead of directly discovering type information
about variables, he adds a level of indirection and discovers
information about the quantity a variable contains. This ap-
proach allows information learned about one variable to be
shared with its aliases but leads to potential correctness prob-
lems if multiple quantities flow to the same variable. Shivers
addresses this by introducing a reflow semantics to correct
for the problems caused by the indirection around quantities.
We do not treat quantity information in our analysis, instead
relying on a pass earlier in the compiler that performs copy
propagation and aggressive inlining. This keeps our analy-
sis relatively simple while still yielding some of the benefits
of his quantities. Since it is based on 0CFA rather than sub-
0CFA, Shivers’s analysis is more precise though asymptoti-
cally more expensive.

v. 35 12 2011/4/9

Serrano (1995) argues that 0CFA is useful in functional
language compilers by presenting two use cases: an analysis
for reducing closure allocation and an analysis for reducing
dynamic type tests. Serrano reports that the latter algorithm
eliminates 65% of dynamic type tests. This differs from our
results, which show that a 0CFA-based analysis eliminates
only 43% of tests. The difference is likely attributable to
the different set of benchmarks and to different strategies for
inserting and counting type checks. As it is based on 0CFA,
his analysis takes O(n3) time in the worst-case.

Heintze and McAllester (1997b) describe a linear time
CFA. It is specifically targeted at typed languages and as-
sumes bounds on the sizes of types. In quadratic time, it can
either list up to a constant number of targets for all call sites,
or list all targets for each call site. Mossin (1998) indepen-
dently developed a similar quadratic analysis for explicitly
typed programs based on higher-order flow graphs. Whereas
these analyses are based on inclusion, Henglein’s simple clo-
sure analysis (Henglein 1992b) computes a cruder approx-
imation based on equality constraints, and can be solved in
almost linear time via unification. None of these are flow-
sensitive.

Our notion of sub-0CFA is close to that of Ashley and Dy-
bvig (1998). They effectively use a more restrictive lattice
than ours but provide a general framework through which
more general lattices can be constructed. Their analysis
achieves a limited form of flow sensitivity when the test
of an if is a type predicate applied to a variable by creating
new bindings for the variable in the then and else parts of
the if whose abstract values are restricted by the test. They
also describe a more general form of flow sensitivity that
tracks variable assignments, but it does not gather observa-
tional information from nested conditionals, type-restricted
primitives, or user-defined functions, and they do not make
any claims about its asymptotic behavior.

6.2 Type recovery based on type inference
Soft typing (Cartwright and Fagan 1991) and more recently,
gradual typing (Siek and Taha 2006) are designed to pro-
duce, through type inference, statically well-typed programs
from dynamically typed programs by introducing run-time
checks or casts. CFA-based type recovery can be seen as
an alternative mechanism for accomplishing a similar ef-
fect. While soft typing and gradual type systems might reject
some programs, our implementation never rejects programs,
because type errors are semantically required to cause run-
time exceptions.

Henglein (1992a) presents a fast O(nα(n)) (almost lin-
ear time) tagging optimization algorithm for Scheme. The
goal of the algorithm is to statically eliminate dynamic tag-
ging and untagging operations, similar to our static elimi-
nation of dynamic type tests. Whereas untagging is related
to type testing, it is subtly different. For example, based on
what can flow to a conditional, Henglein will potentially
optimize away an untagging operation of the test expres-

sion, whereas we will potentially optimize the conditional’s
branches based on the static knowledge gained from the test
expression. A companion paper (Henglein 1994) treats the
theory of dynamic typing in the form of a calculus with ex-
plicit type coercions and an equational theory.

The concept of occurrence typing developed in the con-
text of Typed Scheme (Tobin-Hochstadt and Felleisen 2010),
is closely related to the present analysis in that different oc-
currences of the same variable are typed differently depend-
ing on the control flow through type-testing predicates. The
type system of Typed Scheme express types as formulas in
a propositional logic that has some similarities to the lattice
structure underlying our analysis.

6.3 Recent type-recovery applications
After two decades of research in type recovery, the topic is
as relevant as ever with the success of dynamically typed
languages such as JavaScript, Python, and Ruby.

Jensen et al. (2009) develop a type analysis for JavaScript.
Their analysis is context-sensitive and incorporates both re-
cency abstraction and abstract garbage collection. They fo-
cus however on precision over computational complexity. As
a result, their analysis sometimes requires a few minutes to
process JavaScript programs of only several hundred lines.

Vardoulakis and Shivers (2010) describe a summariza-
tion-based CFA with a degree of flow sensitivity. In addi-
tion to precise call-return matching, their analysis models
precisely the top stack frame of arguments. Their focus is,
however, more on precision than efficiency. The analysis
has since been re-targeted to JavaScript in the form of Doc-
torJS (Mozilla Corporation 2011).

To type check dynamically typed programs, Guha et al.
(2011) combine a type system and a flow analysis such that
the latter can boost the precision of the former. Like our
analysis their flow analysis is flow-sensitive and computes
tag sets for each variable occurrence. Unlike our analysis,
it is not interprocedural, relying instead on the type system
at function boundaries. Furthermore it has a quadratic worst
case time complexity.

6.4 Other related work
To prove soundness of the analysis, we use the concretiza-
tion framework of abstract interpretation (Cousot and Cousot
1992). Cousot and Cousot (1979) originally used traces
(paths) over a flow graph to prove soundness of classical
data-flow analyses. Flow graphs were later generalized to
transition systems (Cousot 1981), and paths were extended
to traces thereof.

Wegman and Zadeck (1991) formulated fast constant
propagation algorithms for a first-order imperative language.
Their conditional constant propagation relates to our CFA in
that they track reachability and may gain information from
a test in a conditional. Wegman and Zadeck list elimination
of run-time type checks in a LISP dialect as a possible use
case of their approach. Whereas they consider multiple ways

v. 35 13 2011/4/9

to handle functions, including aliasing of pass-by-reference
parameters, they do not consider how to handle first-class
functions.

As an illustration of a general property simulation al-
gorithm in ESP, Das et al. (2002) instantiate their general
framework to a flow-sensitive constant-propagation algo-
rithm. The resulting work-list algorithm is polynomial, how-
ever, as it involves invoking a theorem prover at each condi-
tional expression for symbolic evaluation.

7. Conclusions and future work
This paper describes a flow-sensitive type-recovery algo-
rithm based on sub-0CFA that runs in linear-log time. It jus-
tifies, on average, the removal of about 60% of run-time type
checks in a standard set of benchmarks for the dynamically
typed language Scheme. It handles, on average 75,000 lines
of code in less then a second.

The implementation conservatively handles the unspec-
ified evaluation order of arguments and bindings. Making
evaluation-order decisions earlier in the compiler would al-
low the analysis to produce more precise information, par-
ticularly if the decisions were influenced by the needs of the
analysis. Our experiments show that the typical benefit is
likely to be minimal, but the benefit in some cases would be
substantial.

Employing an extended lattice that differentiates pairs
and vectors based on their allocation sites, as the analysis
already does for functions, should also lead to more precise
information. In a statically typed variant of the analysis,
the lattice can also be refined to differentiate functions with
different static types. Even in a dynamically typed language,
functions can be grouped by arity.

Another avenue for further investigation is to supplement
the current techniques with an efficient must-alias analysis,
such that for two aliased variables x and y, information
learned about x is reflected in y. The higher-order must-
alias analysis by Jagannathan et al. (1998) would be a natural
starting point for such an investigation.

Finally, we conjecture that the same techniques we have
used to extend sub-0CFA with flow sensitivity can be ap-
plied more generally to kCFA with the addition of a single
logarithmic factor to the asymptotic cost.

Acknowledgments
TBD.

References
Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. On

finding lowest common ancestors in trees. In Proceedings of the
fifth annual ACM symposium on Theory of computing, STOC
’73, pages 253–265, New York, NY, USA, 1973. ACM. doi:
10.1145/800125.804056.

Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe.
Nearest common ancestors: A survey and a new algorithm for

a distributed environment. Theory of Computing Systems, 37:
441–456, 2004. ISSN 1432-4350. 10.1007/s00224-004-1155-5.

Michael J. Ashley and R. Kent Dybvig. A practical and flexible
flow analysis for higher-order languages. ACM Transactions on
Programming Languages and Systems, 20(4):845–868, 1998.

John Banning. An efficient way to find side effects of procedure
calls and aliases of variables. In Rosen (1979), pages 29–41.

Robert Cartwright and Mike Fagan. Soft typing. In PLDI ’91:
Proceedings of the ACM SIGPLAN 1991 conference on Pro-
gramming language design and implementation, pages 278–292,
1991.

Swarat Chaudhuri. Subcubic algorithms for recursive state ma-
chines. In George C. Necula and Philip Wadler, editors, Pro-
ceedings of the 35th Annual ACM Symposium on Principles of
Programming Languages, pages 159–169, San Francisco, Cali-
fornia, January 2008.

William D. Clinger. Description of benchmarks, 2008. URL
http://www.larcenists.org/benchmarksAboutR6.html.

Patrick Cousot. Semantic foundations of program analysis. In
Steven S. Muchnick and Neil D. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 10, pages 303–342.
Prentice-Hall, 1981.

Patrick Cousot and Radhia Cousot. Abstract interpretation frame-
works. Journal of Logic and Computation, 2(4):511–547, Au-
gust 1992.

Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In Rosen (1979), pages 269–282.

Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive
program verification in polynomial time. In Laurie J. Hendren,
editor, Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Languages Design and Implementation, pages
57–68, Berlin, June 2002.

R. Kent Dybvig. Chez Scheme Version 8 User’s Guide. Cadence
Research Systems, 2010.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing
local control and state using flow analysis. In Gilles Barthe, edi-
tor, Programming Languages and Systems, 20th European Sym-
posium on Programming, ESOP 2011, volume 6602 of Lecture
Notes in Computer Science, pages 256–275, Saarbrücken, Ger-
many, Mar-Apr 2011. Springer-Verlag.

Nevin Heintze and David McAllester. On the complexity of set-
based analysis. In Mads Tofte, editor, Proceedings of the Second
ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 150–163, Amsterdam, The Netherlands, June
1997a.

Nevin Heintze and David McAllester. Linear-time subtransitive
control flow analysis. In Ron K. Cytron, editor, Proceedings
of the ACM SIGPLAN 1997 Conference on Programming Lan-
guages Design and Implementation, pages 261–272, Las Vegas,
Nevada, June 1997b.

Fritz Henglein. Global tagging optimization by type inference.
In William Clinger, editor, Proceedings of the 1992 ACM Con-
ference on Lisp and Functional Programming, LISP Pointers,
Vol. V, No. 1, pages 205–215, San Francisco, California, June
1992a.

v. 35 14 2011/4/9

http://www.larcenists.org/benchmarksAboutR6.html

Fritz Henglein. Dynamic typing: Syntax and proof theory. Science
of Computer Programming, 22(3):197–230, 1994.

Fritz Henglein. Simple closure analysis. Technical Report Seman-
tics Report D-193, DIKU, Computer Science Department, Uni-
versity of Copenhagen, 1992b.

Suresh Jagannathan and Stephen Weeks. A unified treatment of
flow analysis in higher-order languages. In Peter Lee, editor,
Proceedings of the 22nd Annual ACM Symposium on Princi-
ples of Programming Languages, pages 393–407, San Francisco,
California, January 1995.

Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew
Wright. Single and loving it: must-alias analysis for higher-order
languages. In Luca Cardelli, editor, Proceedings of the 25th
Annual ACM Symposium on Principles of Programming Lan-
guages, pages 329–341, San Diego, California, January 1998.

Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type
analysis for JavaScript. In Jens Palsberg and Zhendong Su, ed-
itors, Static Analysis, 16th International Symposium, SAS 2009,
volume 5673 of Lecture Notes in Computer Science, pages 238–
255, Los Angeles, CA, USA, August 2009. Springer-Verlag.

David Melski and Thomas Reps. Interconvertibility of a class of set
constraints and context-free-language reachability. Theoretical
Computer Science, 248(1-2):29–98, 2000.

Jan Midtgaard and David Van Horn. Subcubic control flow analysis
algorithms. Computer Science Research Report 125, Roskilde
University, Roskilde, Denmark, May 2009. Revised version to
appear in Higher-Order and Symbolic Computation.

Torben Æ. Mogensen. Glossary for partial evaluation and related
topics. Higher-Order and Symbolic Computation, 13(4):355–
368, 2000.

Christian Mossin. Higher-order value flow graphs. Nordic Journal
of Computing, 5(3):214–234, 1998.

Mozilla Corporation. Doctor JS, 2011. http://doctorjs.org/.

Eugene W. Myers. Efficient applicative data types. In POPL ’84:
Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 66–75, 1984.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Princi-
ples of Program Analysis. Springer-Verlag, 1999.

William Pugh. Skip lists: a probabilistic alternative to balanced
trees. Communications of the ACM, 33:668–676, June 1990.
ISSN 0001-0782. doi: 10.1145/78973.78977. URL http:

//doi.acm.org/10.1145/78973.78977.

Barry K. Rosen, editor. Proceedings of the Sixth Annual ACM Sym-
posium on Principles of Programming Languages, San Antonio,
Texas, January 1979.

Manuel Serrano. Control flow analysis: a functional languages
compilation paradigm. In Proceedings of the 1995 ACM Sym-
posium on Applied Computing, pages 118–122, Nashville, Ten-
nessee, February 1995.

Olin Shivers. Control flow analysis in Scheme. In PLDI ’88: Pro-
ceedings of the ACM SIGPLAN 1988 conference on Program-
ming Language design and Implementation, volume 23, pages
164–174, July 1988.

Olin Shivers. Data-flow analysis and type recovery in scheme.
Technical Report CMU-CS-90-115, CMU School of Computer

Science, Pittsburgh, PA, March 1990.

Jeremy G. Siek and Walid Taha. Gradual typing for functional
languages. In Scheme and Functional Programming Workshop,
September 2006.

Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for
untyped languages. In Paul Hudak and Stephanie Weirich,
editors, Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming (ICFP’10), pages 117–
128, Baltimore, Maryland, Sep 2010.

Dimitrios Vardoulakis and Olin Shivers. CFA2: a context-free ap-
proach to control-flow analysis. In Andrew D. Gordon, editor,
Programming Languages and Systems, 19th European Sympo-
sium on Programming, ESOP 2010, volume 6012 of Lecture
Notes in Computer Science, pages 570–589, Paphos, Cyprus,
March 2010. Springer-Verlag.

Mark N. Wegman and Kenneth F. Zadeck. Constant propagation
with conditional branches. ACM Transactions on Programming
Languages and Systems, 13:181–210, 1991.

v. 35 15 2011/4/9

http://doctorjs.org/
http://doi.acm.org/10.1145/78973.78977
http://doi.acm.org/10.1145/78973.78977

0%

20%

40%

60%

80%

100%

ack

array1

bibfreq

bibfreq2

browse

bv2string

cat

cat2

cat3

compiler

conform

cpstak

ctak

dderiv

deriv

destruc

diviter

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

divrec

dynamic

earley

equal

fft

fib

fibc

fibfp

gcbench

graphs

hashtable0
lattice

listsort

matrix

maze

mazefun

mbrot

Figure 14: Percent of type checks removed (1/2)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

mbrotZ

mperm

nboyer

normalization
nqueens

ntakl

nucleic

paraffins

parsing

peval

pi

pnpoly

primes

puzzle

quicksort

ray

read0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

read1

read2

read3

sboyer

scheme

simplex

slatex

string

sum

sum1

sumfp

tail

tak

takl

triangl

vecsort

wc

Figure 15: Percent of type checks removed (2/2)

v. 35 16 2011/4/9

	Introduction
	Background
	0CFA
	Flow-graph implementation of CFA
	Top and escaped functions in CFA
	Sub-0CFA
	Non-function types

	Traditional flow-sensitivity
	Flow-sensitivity for unconditional observers
	Flow-sensitivity for conditional observers
	Flow-graph representation of flow-sensitivity

	Efficient flow-sensitivity
	Context skipping
	Selecting context skips
	Caching context skips
	Algorithm summary

	Implementation
	Implementation structure
	Implementation features
	Effectiveness
	Efficiency

	Related work
	CFA and CFA-based type recovery
	Type recovery based on type inference
	Recent type-recovery applications
	Other related work

	Conclusions and future work

