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Abstract. In current CBR systems, case adaptation is usually per-
formed by rule-based methods that use task-speci�c rules hand-coded
by the system developer. The ability to de�ne those rules depends on
knowledge of the task and domain that may not be available a priori,
presenting a serious impediment to endowing CBR systems with the
needed adaptation knowledge. This paper describes ongoing research on
a method to address this problem by acquiring adaptation knowledge
from experience. The method uses reasoning from scratch, based on in-
trospective reasoning about the requirements for successful adaptation,
to build up a library of adaptation cases that are stored for future re-
use. We describe the tenets of the approach and the types of knowledge
it requires. We sketch initial computer implementation, lessons learned,
and open questions for further study.

1 Introduction

Case-based reasoning (CBR) systems solve new problems by retrieving prior so-
lutions of similar previous problems and performing case adaptation (also called
case modi�cation) to �t the retrieved cases to the new situation. Although much
progress has been made in methods for case retrieval, both the American and
European CBR communities have identi�ed case adaptation as a particularly
challenging open problem for the �eld (e.g., [1, 18]). The problem is so acute
that the most e�ective current strategy for building CBR applications is to by-
pass adaptation entirely, building advisory systems that provide cases to human
users who perform the adaptation themselves (e.g., [2, 14]). However, despite
the practical bene�ts of retrieval-only advisory systems, successful use of advi-
sory systems may require considerable user expertise. Consequently, automatic
case adaptation is important from a practical perspective, not only to enable
CBR systems to perform autonomously but to enable them to aid naive users.
Likewise, as we discuss in [19], increased understanding of the case adaptation
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process and the knowledge required is also important from a cognitive model-
ing perspective, as a step towards understanding how humans adapt cases when
they reason from prior episodes.

This paper describes research based on characterizing case adaptation knowl-
edge by decomposing it into two parts: (1) a small set of abstract structural
transformations (e.g., [5, 9]), and (2) memory search strategies for �nding the
information needed to apply those transformations. This framework forms the
basis of an approach to adaptation in which new adaptation problems are solved
by �rst selecting a transformation indexed under the type of problem motivating
adaptation, and then performing introspective reasoning about how to strate-
gically search memory for the information needed to apply the transformation
[17]. Not only does this approach provide increased exibility in �nding needed
information, but it serves as a foundation for learning to improve adaptation per-
formance from experience: A trace of this process can be stored as an adaptation

case and used in future case-based reasoning about the adaptation process itself.
Thus the approach is aimed at providing both the exibility to deal with novel
case adaptation problems and adaptation abilities that improve with experience.

We begin by discussing the signi�cance of the case adaptation problem for
CBR and the tenets of our approach. We then summarize an initial implementa-
tion that applies our approach to learning case adaptation for case-based plan-
ning (e.g., [8]) in the disaster response planning domain. We close by highlighting
lessons learned and related research on case adaptation and memory search.

2 Acquiring Case Adaptation Knowledge

Coding e�ective adaptation rules can require extensive knowledge of the CBR
system's task, its domain, and the contents of its memory. Unfortunately, this
knowledge may not be available a priori. Thus in de�ning case adaptation
rules, developers face the same problem of knowledge acquisition in imperfectly-
understood domains that often impedes the development of rule-based systems
in other contexts. In many of those contexts, the knowledge acquisition problem
has been signi�cantly ameliorated by the use of case-based reasoning. Conse-
quently, it is natural to consider applying CBR to the case adaptation process
itself, replacing pre-de�ned adaptation rules with adaptation cases that reect
prior adaptation experience [3, 17, 29].

An important question is the source of the needed library of adaptation
cases. We propose a method that starts with a library of domain-independent
adaptation rules, using them to solve novel adaptation problems. The results of
applying those rules to speci�c adaptation problems are stored as adaptation
cases to be re-used by case-based reasoning. The following sections �rst discuss
the rule-based process and then the use of adaptation cases.

2.1 Adaptation = Transformations + Memory Search

Case adaptation knowledge is often characterized in either of two ways. The
�rst is with abstract rules, such as the rule add a step to remove harmful side-



e�ect for case-based planning [8]. Such rules are applicable to a broad class of
plan adaptation problems, but give no guidance about how to �nd the speci�c
knowledge needed to apply them (e.g., to �nd the right step to add in order
to mitigate a given side-e�ect). For example, if the planning task is to generate
X-ray treatment plans, and the retrieved plan administers the minimum X-ray
dose required to destroy a tumor, but also has the bad side-e�ect of exposing
the spinal cord to excessive radiation, deciding which step to add in order to
remove the bad side-e�ect may require considerable domain knowledge.

The second way to characterize adaptations is by relying on adaptation rules
that include the required speci�c knowledge. For example, in the radiation treat-
ment planning domain, the general rule add a step to remove harmful side-e�ect

can be replaced by speci�c rules such as add the step \rotate radiation sources"

to remove harmful side-e�ect \excess radiation" [4].

Both these approaches exhibit the classic operationality/generality tradeo�
from explanation-based learning (e.g., [28]). Abstract rules have generality: a
small set of transformations appears su�cient to characterize a wide range of
adaptations [5, 15]. However, abstract rules are di�cult to apply. Speci�c rules,
on the other hand, are easy to apply but have limited generality. In addition,
de�ning such rules is di�cult because of the speci�c knowledge that they require.

Kass [11] proposes one way to address the operationality/generality trade-
o�. His approach uses hand-coded adaptation strategies that combine general
transformations with domain-independent memory search strategies for �nding
the domain-speci�c information needed to apply the strategies. Our approach
to adaptation builds on this idea in treating adaptation knowledge as a combi-
nation of knowledge about general transformations and about memory search.
However, instead of relying on hand-coded memory search strategies, our model
builds memory search strategies as needed. When presented with a novel adap-
tation problem, it performs a planning process that reasons introspectively to
determine the information required to solve the particular adaptation problem
and to decide which memory search strategies to use to �nd that information.
This process guides the search for information needed to perform the adaptation.

2.2 From Rule-Based Adaptation to CBR

After an adaptation problem has been solved by reasoning from scratch, a nat-
ural question is how to learn from that reasoning. Initially, it appears that
explanation-based generalization (EBG) (e.g., [22]). would be the appropriate
learning method, because it allows forming operational new generalizations: The
memory search plan that found the needed information could be generalized and
stored. However, one of the conclusions of our research is that using EBG to
learn memory search rules is not practical [17]. For EBG to apply successfully to
memory search rules, those memory search rules must provide a complete and
correct theory of the contents and organization of memory. Unfortunately, the
contents and organization of a speci�c memory are highly idiosyncratic [13, 27]
and thus hard to characterize precisely. Consequently, a chain of memory search



rules that �nds desired information in one instance is not guaranteed to ap-
ply to other problems that appear to be within the scope of those same rules:
explanation-based generalization may not yield reliable results.

In contrast, using case-based reasoning as the learning method for adaptation
knowledge makes it possible for learned knowledge to reect the idiosyncrasies
of the memory's organization and its contents; unlike abstract adaptation rules,
cases that package particular adaptation episodes encapsulate the system's ex-
perience on speci�c adaptation and memory search problems and reect the
system's speci�c task, domain, and memory organization. Consequently, we are
applying CBR to learning adaptation cases. Thus our model acquires not only a
library of problem-solving cases, but also a library of cases representing episodes
of case adaptation. The following section discusses our computer model of the
entire adaptation process, including both case adaptation from scratch in re-
sponse to novel adaptation problems and case-based adaptation to re-use the
results of previous adaptation episodes.

3 DIAL

The task domain for our research is disaster response planning for natural and
man-made disasters. Examples of such disasters include earthquakes, chemical
spills, and \sick building syndrome," in which occupants of a building fall victim
to problems caused by low air quality inside a building. Studies of human disaster
response planning support that case-based reasoning plays an important role in
response planning by human disaster planners [26].

Our computer model, the case-based planner DIAL,2 starts with a library
of domain cases|disaster response plans from previous disasters|and general
(domain-independent) rules about case adaptation and memory search. Like
other case-base planners, it learns new plans by storing the results of its planning
process. However, the central focus of our research is not on the case-based
planning process per se, but on learning to improve case adaptation.

When DIAL successfully adapts a response plan to a new situation, it stores
not only the problem solving episode, but also two types of adaptation knowledge
for use in similar future adaptation problems:memory search cases encapsulating
information about the steps in the memory search process, and adaptation cases

encapsulating information about the adaptation problem as a whole, the memory
search cases used to solve it, and the solution to the adaptation problem.

The entire DIAL system includes a schema-based story understander (that
receives its input in a conceptual representation), a response plan retriever and
instantiator, a simple evaluator for candidate response plans, and an adaptation
component to adapt plans when problems are found. The case-based planning
framework is based in a straightforward way on previous case-based planners
(e.g., CHEF [8]). Consequently, this paper will only discuss the adaptation com-
ponent.

2 For Disaster response with Introspective Adaptation Learning.



DIAL's adaptation component receives two inputs: an instantiated disaster
response plan and a description of a problem in the response plan requiring
adaptation. To illustrate, one of the examples processed by DIAL involves the
following story: At Beaver Meadow Elementary School in Concord, New Hamp-

shire, students have been complaining of symptoms like unusual fatigue, eye irri-

tation, respiratory problems, and allergic reactions from being inside the building.

When DIAL processes this story, a straightforward schema-based understand-
ing process identi�es the problem as an air quality problem. DIAL then at-
tempts to retrieve and apply a response plan for a similar disaster. The response
plan retrieved is the plan for the following factory air quality problem: A & D

Manufacturing in Bangor, Maine, has recently come under pressure from work-

ers and union-representatives to correct perceived environmental problems in the

building. Workers have been a�ected by severe respiratory problems, headaches,

fatigue, and dizziness. (These episodes are based on case studies from the INvi-
ronment newsletter for indoor air quality consultants.)

The response plan for A & D Manufacturing involves notifying the workers'
union. DIAL's evaluator determines that the noti�cation step does not apply
to the current situation, because of a conict with normative type restrictions
on union members: elementary school students do not belong to unions. (The
evaluation and problem characterization process is similar to that described
in Leake [16]). Consequently, the response plan must be adapted to apply to
the students. DIAL's adaptation component receives two inputs describing this
situation: the response plan for the A & D Manufacturing problem, applied to
the new situation, and a description of the problem to repair by adaptation: that
trying to notify the students' union is not reasonable, because students do not
belong to unions. After a description of the general processing done in response
to adaptation problems, we will discuss how it applies to this example.

Given inputs describing a candidate response plan and a problem to be
adapted, the process performed by DIAL's adaptation component is as follows:

1. Case-based adaptation: DIAL �rst attempts to retrieve an adaptation
case that applied successfully to a similar previous problem. If retrieval is
successful, that case is re-applied and processing continues with step 3.

2. Rule-based adaptation: When no relevant prior case is retrieved, DIAL
selects a transformation associated with the type of problem that is being
adapted (e.g., role/�ller mismatches, such as the mismatch between unions
and students, are associated with substitution transformations: a mismatch
can be repaired by replacing the role being �lled or how the given role is
�lled). Given the transformation, the program generates a knowledge goal

[23] for the information needed to apply the transformation. E.g., for sub-
stitutions of role-�llers, the knowledge goal is to �nd an object that satis�es
all the case's constraints on the object being replaced.
The knowledge goal is then passed to a planning component that uses in-
trospective reasoning about alternative memory search strategies [17, 20] to
�nd the information needed. This search process generates a memory search
plan whose operators include both an initial set of memory search strategies



and memory search cases stored after solving previous adaptation problems.
3. Plan evaluation: The adapted response plan is evaluated by a simple eval-

uator that checks the compatibility of the current plan with explicit con-
straints from the response plan. A human user performs backup evaluation.
If the new response plan is not acceptable, other adaptations are tried.

4. Storage: When adaptation is successful, the resulting response plan, adap-
tation case, and memory search plan are stored for future use.

The following subsections elaborate on the representation of knowledge goals, the
memory search process, the adaptation case representation, and the examples
currently processed.

Representing knowledge goals: In order to use our framework to guide rule-
based case adaptation, a CBR system must be able to reason about how to
�nd the information that it needs in order to apply a given transformation to
a particular response plan. To do this reasoning, it must �rst have an explicit
representation of the sought-after information. In DIAL, these needs are repre-
sented by explicit knowledge goals [23]. Previous study of knowledge goals has
developed a two-part representation combining a concept speci�cation [23] pro-
viding a template to match with candidate information and a description of how
the information, once found, should be used.

To satisfy the requirements of memory search, however, we have found that
the representation must include some additional components. First, as is re-
ected implicitly in the retrieval mechanisms of many CBR systems, the goals of
memory search must often be described in terms of the available alternatives in
memory (e.g., searching for the matching problem whose solution appears easi-
est to adapt, compared to other alternatives), rather than described by simply
matching a template. Consequently, DIAL's knowledge goal representation also
includes a comparative speci�cation describing how to choose between multiple
alternatives that satisfy the concept speci�cation. Also, DIAL's knowledge goal
representation includes information on the amount of search e�ort allowed for
satisfying the knowledge goal (measured in terms of the number of primitive
memory operations that may be applied during memory search).

The memory search process: During DIAL's initial rule-based adaptation
process, it �nds the information needed to apply adaptation transformations by
an introspective reasoning process that implements memory search as a form
of planning, using operators that describe actions within its internal, or \men-
tal" world, rather than within the external world [10]. Using a planning process
facilitates exible re-combination of memory search knowledge. By decoupling
memory search knowledge from speci�c adaptation rules, memory search knowl-
edge can be applied to any problem for which it appears relevant.

Two types of memory search knowledge are provided to the system. First, the
system is provided with knowledge goal transformation rules, similar to Kolod-
ner's [13] query transformation rules, that reformulate the questions posed to
memory. For example, one strategy for retrieving an instance of an event is to
search for contexts in which it would have been likely to play a role. Second, the



system is provided with a suite of domain-independent memory search strategies

that depend on \weak methods" of memory search (e.g., ascending and descend-
ing abstraction hierarchies to �nd related nodes). DIAL currently includes six
of these strategies. All strategies are de�ned in terms of a substrate of seven
primitive memory access operations (e.g., to extract the \parent" of a node).

The results of the memory search process are �ltered by constraints from the
particular adaptation problem. The result is a relatively unguided initial search
for information, but traces of this process are saved as memory search cases

and made accessible for use during future memory search. These cases provide
more precise guidance for memory search in similar future situations. In this
model, cases are acquired solely by reasoning from scratch, which may require
considerable processing e�ort. However, as will be discussed in a later section,
we have also begun to investigate how this view of adaptation can be used to
facilitate interactive acquisition of adaptation knowledge.

DIAL's memory search mechanism uses a reactive planning framework, in-
spired by the RAPS system [7], to interleave planning with execution and re-
spond to problems during memory search (e.g., that needed intermediate infor-
mation cannot be found). In this process, DIAL's rule-based adapter accepts a
knowledge goal and chooses a strategy or stored memory search case indexed by
the knowledge goal. In the course of processing, a strategy may transform the
current knowledge goal or may generate sub-knowledge-goals, also to be satis�ed
by the planning process. Throughout the memory search process, the adapter
maintains a reasoning trace of the operators it applies. That trace is packaged
with the search result, as a memory search case, and stored for future use.

Representing and organizing cases learned from adaptation episodes:

DIAL's memory search cases package the initial knowledge goal, a trace of
knowledge-goal transformations and other memory search operations involved
in the search process, a record of the search outcome (failure or success), the
cost of the search in terms of primitive memory operations performed, and the
information found. Memory search cases are indexed under the knowledge goals
that they satisfy, and can suggest search operations to attempt in the future;
they also have the potential to be used to warn of previous search failures. Mem-
ory search cases are accessible to the knowledge planning process for memory
search, augmenting the initial library of built-in operators. For future searches,
successful search cases that match the largest subset of the current knowledge
goals are re-used. When the result of the stored search case does not satisfy
current constraints, the search is continued by local search.

DIAL also packages adaptation cases, which include both the transformation
used for the adaptation and pointers to memory search cases used to search for
information to apply the transformation. These provide more speci�c guidance
about how to adapt cases to repair particular types of problems.

Examples processed: DIAL's initial case library currently contains two dis-
aster response plans, a response plan for the previously-described air quality
disaster at A & D Manufacturing and a response plan for an industrial chemical



spill. The system has been tested on four di�erent stories exercising di�erent
parts of its adaptation mechanisms. The �rst concerns the indoor air quality
problem at Beaver Meadow school, for which DIAL retrieves the A & D disaster
response plan. (Like the stories processed, stored response plans are based on
episodes from the INvironment newsletter.) The A & D disaster response plan
includes many steps applicable to the new situation, providing the basis for a
response to the school air quality problem. However, as previously described, one
of the steps in the response plan for the air quality problem at A & D manufac-
turing does not apply: notifying the union of the victims. Because schoolchildren
do not have unions, the noti�cation step of the previous response plan must be
adapted to apply to the schoolchildren. Many adaptations are possible, but a
common suggestion from human readers is that the step involving notifying the
union should be adapted into a step notifying the children's parents.

When DIAL is run on this example, no adaptations have yet been learned, so
the program uses its rule-based adaptation process to perform the adaptation. It
�rst selects a substitution transformation. (In DIAL, candidate transformations
for repairing problems in retrieved cases are indexed directly under categories of
problem types. For a description of possible problem types, see Leake, 1992.) In
this case, the \role/�ller mismatch" problem of the schoolchildren belonging to
a union may be resolved by either of two substitutions: substituting a new �ller
(notifying someone else's union) or substituting a di�erent concept in which the
children play a similar role (notifying another group relevant to the children).
To determine appropriate substitutions, the system must hypothesize the factors
that were important in the relationship between workers and their union in
the A & D manufacturing problem. Possible constraints can be obtained by
examining alternative \views" of the relationship between the union and the
workers in the original episode [31], based on the relationships represented in the
system's memory. In DIAL's memory, one view of union membership involves
the member being represented, suggesting searching for representatives of the
children. This search yields \parents" as one possibility. (Other possibilities, like
\student government" are also hypothesized but rejected during evaluation.) By
storing the successful choices according to internal and external feedback, the
system builds up information beyond the information in its initial world model
about which adaptations to favor for particular adaptation problems.

A second example involves an air quality problem on a military base. The
A & D manufacturing episode is the most similar in memory, but again the step
of notifying the union fails to apply, this time because soldiers do not have unions.
DIAL retrieves the previously-learned adaptation but �nds that it too fails to
apply: Notifying the soldier's parents is rejected by the user. Consequently, it
applies a very simple adaptation to the adaptation case, discarding the �nal step
in the memory search plan from the adaptation case and adding local search. In
particular, it preserves that the representation relationship was important in the
previous situation, and searches for representatives of soldiers. Using this guid-
ance, it searches memory for representatives of soldiers and �nds \commanding
o�cers" as a possible group to notify.



Two additional examples involve another disaster at a school, to which the
Beaver Meadow school response plan is reapplied in a straightforward way with-
out adaptation, and the story of a chemical spill episode at a school. The chemical
spill example illustrates the importance of learning new adaptations during CBR,
instead of only learning new cases as traditionally done in CBR systems. For the
chemical spill example, DIAL retrieves the previous chemical spill example as
the most similar case, which is reasonable in light of the shared steps involved in
cleaning up chemical spills|the response plan learned from the Beaver Meadow
air quality problem is not the most similar response plan. However, the adap-

tation learned from processing the Beaver Meadow story is still useful: DIAL
uses the adaptation learned from the Beaver Meadow school example to adapt
the response to the previous chemical spill (which also involves notifying the
workers' union) by substituting the students' parents. This demonstrates the
value of decoupling case learning from adaptation learning: learning both new
adaptation cases and new problem-solving cases increases the e�ectiveness of a
CBR system in responding to new problems.

4 Lessons Learned and Open Issues

The conclusions drawn from the project to date include a number of points dis-
cussed in the previous sections: the usefulness of decomposing adaptation knowl-
edge into two semi-independent parts, abstract transformations and memory
search knowledge; the appropriateness of CBR; rather than explanation-based
learning, as the mechanism for learning the needed memory search information;
the need for a richer notion of knowledge goals than in previous research; and
the usefulness of a reactive model of memory search planning in order to use
incremental results of the search to guide further decisions.

Learning new strategies for adapting cases also has interesting rami�cations
for similarity assessment. In current CBR systems, similarity assessment is gen-
erally based on �xed criteria. However, as a CBR system learns how to adapt
cases to deal with new types of problems, the similarity metric should be ad-
justed to reect that (thanks to the adaptation learning), those problems are no
longer as great an impediment to applying the case. Consequently, one area for
further study is how best to make the similarity assessment process reect the
changing state of system adaptation knowledge.

We are now addressing a number of open questions. One of these is the level
of granularity to be used for memory search cases. At present, memory search
cases package entire memory search plans, but is possible that making subparts
of the search plans available, as in Redmond's [24] snippets, would be bene�cial.

Another question being studied is the e�ectiveness of the planful memory
search process. To give an indication of the value of the knowledge planning
framework for memory search, the current examples have been processed both
using the planful process and using the simple local search strategy used by a
number of CBR systems to �nd substitutions [15]. In this comparison, the knowl-
edge planning method resulted in an order of magnitude savings in the number



of primitive memory operations performed. This improvement is encouraging,
although at this point it cannot be taken too seriously because of the limited
set of examples used. Likewise, not enough examples are yet implemented to
have reliable data on the tradeo�s between memory search by knowledge plan-
ning and CBR. We are now extending the system with the aim of performing
additional tests. In particular, an important tradeo� to investigate is the utility
problem [21] for learned adaptation knowledge: the danger that processing over-
head due to the proliferation of adaptation cases and memory search cases will
counterbalance the bene�ts of the additional guidance that they provide.

A �nal question involves the potential to apply this view of case adaptation
to alternative methods for acquiring case adaptation knowledge. DIAL models
the transition from adaptation by using unguided general rules to adaptation
by using speci�c adaptation cases, by storing results of successful rule-based
adaptation. With its method, the initial rule-based adaptation phase may be
quite expensive. An alternative method for acquiring adaptation cases is to use
its view of adaptation|as transformations plus memory search|as a basis for an
interface to facilitate direct acquisition of adaptation cases from a human user.
Such an interface could enable a user to suggest transformations and search
strategies from a vocabulary of alternatives. We have begun to investigate this
approach, both for its own potential and as a means of more rapidly acquiring a
set of adaptation cases to test and re�ne DIAL's case-based adaptation process.

5 Relationship to Other Approaches

Memory search: Although many sophisticated memory search schemes have
been developed in CBR research, they are normally driven by opaque procedures,
rather than being accessible to explicit reasoning and learning. Our research
follows an alternative course, developing explicit models of the memory search
process to increase the exibility and e�ectiveness of memory search, in the spirit
of [13, 25], and to make it accessible to learning, as in [6, 12].

Case adaptation: Some previous systems are able to learn knowledge useful
for guiding adaptation. For example, although CHEF [8] has a static library of
domain-independent plan repair strategies, it augments that library with learned
ingredient critics that suggest adaptations appropriate to particular ingredients.
Likewise, PERSUADER [29] uses a combination of heuristics and case-based
reasoning to guide adaptation, searching memory for similar prior adaptations
to apply. In these systems, however, the adaptation information learned is quite
domain and task speci�c, while memory search cases have more exibility. The
use of CBR for case adaptation has also been advocated by Berger [3], in the
context of storing and re-using an expert's adaptations. An alternative approach
to the case adaptation problem is to use derivational analogy, deriving a new
solution by re-applying a prior solution process to new circumstances, rather
than directly adapting the old solution itself [30].



6 Conclusions

Automatic case adaptation is necessary to enable CBR systems to function au-
tonomously and to serve naive as well as expert users. However, knowledge ac-
quisition problems for the rule-based adaptation methods used in many CBR
systems have proven a serious impediment to developing CBR applications that
perform their own adaptation.

We have described a framework for characterizing adaptation knowledge in
terms of transformations and information search, have discussed how that frame-
work is being used as the basis for a model of automatic learning of case adap-
tation knowledge, and have sketched an initial implementation of that model.

The model combines reasoning from scratch and case-based reasoning to
build up expertise at case adaptation. The aim of this approach is to enable CBR
systems to make the transition from adaptation guided by general rules (which
may be unreliable and expensive to apply) to adaptation guided by adaptation
cases that reect speci�c case adaptation experience. Thus our method is a way
for CBR systems to learn to become more e�ective at applying their existing
cases to new situations.
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