
1
M Young, CS461 guest lecture

Decomposing and Testing

Your Project

Principles for Modular Decomposition
Design for Test

Incremental Construction and Testing

2
M Young, CS461 guest lecture

Goals of Decomposition

• Incremental development (risk reduction)
• Parallel (team) development
• Evolution

– (may or may not apply to CS461)

3
M Young, CS461 guest lecture

Incremental Development

• Must have a well-defined build order
– With frequent checkpoints — test as you go
– Chunks of 1 day to 1 week (less for a class project)

• Increments may be by adding modules or by
adding features
– Adding modules is generally better, but not always

practical
– Example: parts (a) and (b) of assignment

4
M Young, CS461 guest lecture

Team Development

• Minimize required communication
– Simple, precise interfaces, particularly between parts

written by different programmers

• Minimize integration difficulties
– Through precise, complete interface specifications

• especially interfaces between people, or between different
phases of the project

– Through independent unit testing
• code should be tested before it is given to teammates

– By allowing frequent incremental builds
• the team should “build and smoke” on a regular basis

5
M Young, CS461 guest lecture

Information Hiding

• The purpose of a module
is to hide a secret
– Hide what may change

• Example: Symbol table
– Secret: Is it a hash table, or

a search tree?
– Provide a compatible

interface
– Minimize and localize

dependence on specific
features

SymbolTable

HashedSymbolTable TreeSymbolTable

(abstract)

The Tree implementation ma y
have an additional “merge”
operation; its use should be

localized.

6
M Young, CS461 guest lecture

Modularizing Type Checking?

• The “syntax separate from interpretation”
decomposition has already been forced on you
– as well as combining type-checking with intermediate

code generation

• Parts (a) and (b) of assignment are not natural
modules
– we don’t get from (a) to (b) by adding modules, or

replacing some entirely

• The procedural breakdown transVar, transExp,
etc. is probably as good as you can do

7
M Young, CS461 guest lecture

Design for Test

• Build Plan: Testable subsystems
– Frequent incremental builds with observable behavior
– Scaffolding as part of the plan and product
– May be arranged to test riskiest parts first

• Checkable interfaces
– Particularly between individual developers and teams
– May involve adding or “moving” interfaces

• ex: text I/O of critical data structures
• ex: scriptable abstraction below GUI

8
M Young, CS461 guest lecture

Why Unit Test First?

Testability = Controllability + Observability +
Partitioning

• Controllability & Observability
– It is (usually) easier to drive an individual unit through

all interesting behaviors, and observe the results, at
the unit level

– Sometimes controllability and observability can be
achieved in context; is this the case for the type
checker? How?

• Partitioning
– It is much, much easier to diagnose and fix a fault in

the scope of a small unit that you just wrote

9
M Young, CS461 guest lecture

Automate the Testing

• Driver: Make re-running the tests mechanical
– At the least: capture your test cases for replay

• Oracle: Make judging the tests mechanical
– Especially for re-running old tests after each addition

to your type checker
– Approaches:

• Recording expected outputs; may require special options to
the application (observability)

• Assertions (structural invariants)

10
M Young, CS461 guest lecture

Choosing Test Cases

• Devise tests during design and coding, not after
• Devise specification-based tests, then

implementation-based tests
– Example: First tests of “symbol table,” then extra

tests for “hashed symbol table” (like what?)
– Every kind of expression, and each case

(INCLUDING ERRORS) for evaluation

• Emphasize boundary conditions

11
M Young, CS461 guest lecture

Example É

ExpTy transExp (Absyn.OpExp e) { ...

 if (oper == Absyn.OpExp.PLUS || …. { …

 return new ExpTy(null, INT);

 }

 else if (oper == Absyn.OpExp.LT ||…) { …

 if (left_type.coerceTo(right_type) || … {

if (…) { ; }

else {

 String msg = …

 error(e.pos, msg);

}

 }

 else { … (etc.)

Ideally, you should start
with an independent case
analysis for testing (why?).

It is essential that each test
case include expected
outcome.

It is VERY helpful if you can
run all tests, and check
outcomes, mechanically.

12
M Young, CS461 guest lecture

Incremental Build & Test

• Establish a “build plan”
– An order, and schedule, for adding pieces to your

project
• Ordered so that each addition can be tested before moving to

the next

• Increments < 1 week
– Including regular build-and-smoke points with

integration of all parts

• Use version control system and/or process to
maintain recoverability
– Roll back from any disaster

